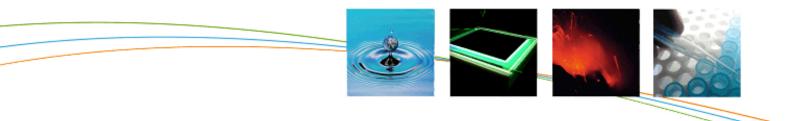


Contract N°. Specific contract 185/PP/ENT/IMA/12/1110333 implementing FC ENTR/29/PP/FC Lot 2

Report


Preparatory Studies for Product Group in the Ecodesign Working Plan 2012-2014: Lot 8- Power Cables DRAFT Task 5 report

Contact VITO: Paul Van Tichelen, Dominic Ectors, www.erp4cables.net

Study for European Commission DG ENTR unit B1, contact: Cesar Santos Gil

2014/ETE/RTBD/DRAFT

VITO NV Boeretang 200 – 2400 MOL – BELGIUM Tel. + 32 14 33 55 11 – Fax + 32 14 33 55 99 vito@vito.be – www.vito.be

VAT BE-0244.195.916 RPR (Turnhout) Bank 435-4508191-02 KBC (Brussel) BE32 4354 5081 9102 (IBAN) KREDBEBB (BIC)

Project team

Vito:

Paul, Van Tichelen Dominic, Ectors Marcel, Stevens Wai Chung, Lam

Disclaimer:

The authors accept no liability for any material or immaterial direct or indirect damage resulting from the use of this report or its content.

The sole responsibility for the content of this report lies with the authors. It does not necessarily reflect the opinion of the European Communities. The European Commission is not responsible for any use that may be made of the information contained therein.

DISTRIBUTION LIST

Public

EXECUTIVE SUMMARY

VITO is performing the preparatory study for the new upcoming eco-design directive for Energy-related Products (ErP) related to power cables, on behalf of the European Commission (more info <u>http://ec.europa.eu/enterprise/policies/sustainable-business/ecodesign/index en.htm</u>).

In order to improve the efficient use of resources and reduce the environmental impacts of energy-related products the European Parliament and the Council have adopted <u>Directive 2009/125/EC</u> (recast of <u>Directive 2005/32/EC</u>) establishing a framework for the setting Ecodesign requirements (e.g. energy efficiency) for energy-related products in the residential, tertiary, and industrial sectors. It prevents disparate national legislations on the environmental performance of these products from becoming obstacles to the intra-EU trade and contributes to sustainable development by increasing energy efficiency and the level of protection of the environment, taking into account the whole life cycle cost. This should benefit both businesses and consumers, by enhancing product quality and environmental protection and by facilitating free movement of goods across the EU. It is also possible to introduce binding information requirements for components and sub-assemblies.

The MEErP methodology (Methodology for the Eco-design of Energy-related Products) allows the evaluation of whether and to which extent various energy-related products fulfil the criteria established by the ErP Directive for which implementing measures might be considered. The MEErP model translates product specific information, covering all stages of the life of the product, into environmental impacts (more info http://ec.europa.eu/enterprise/policies/sustainable-business/ecodesign/methodology/index en.htm).

The tasks in the MEErP entail:

Task 1 - Scope (definitions, standards and legislation);

Task 2 – Markets (volumes and prices);

Task 3 – Users (product demand side);

Task 4 - Technologies (product supply side, includes both Best Available Technology (BAT) and Best Not Yet Available Technology (BNAT));

Task 5 – Environment & Economics (base case Life Cycle Assessment (LCA) & Life Cycle Costs (LCC));

Task 6 – Design options(improvement potential);

Task 7 – Scenarios (policy, scenario, impact and sensitivity analysis).

Tasks 1 to 4 can be performed in parallel, whereas 5, 6 and 7 are sequential.

Task 0 or a Quick-scan is optional to Task 1 for the case of large or inhomogeneous product groups, where it is recommended to carry out a first product screening. The objective is to re-group or narrow the product scope, as appropriate from an ecodesign point of view, for the subsequent analysis in tasks 2-7.

The preparatory phase of this study is to collect data for input in the MEErP model. An executive Summary of the complete study will be elaborated at completion of the draft final report.

Comment: This report is currently a working progress, as some parts of the study are missing comments and data from the stakeholders, therefore it shall not be viewed as a final report.

TABLE OF CONTENTS

Distribut	ion List	I
Executiv	e Summary	
Table of	Contents	III
List of Fi	gures	IV
List of Ta	ables	v
List of A	cronyms	vi
СНАРТЕ	R 5 Task 5: ENVIRONMENT & ECONOMICS	7
5.1 Pi	roduct-specific inputs	7
5.1.1	Identification of base cases	7
5.1.2	Manufacturing of the product: Bill Of Materials	
5.1.3	Distribution phase: volume of packaged product	12
5.1.4	Use phase	12
5.1.5	End of Life (EoL)	13
5.1.6	Life Cycle Cost Inputs	13
5.2 B	ase case environmental impact assessment (using EcoReport)	
5.2.1	Base case 1: lighting circuit in services sector	14
5.2.2	Base case 2: distribution circuit in services sector	16
5.2.3	Base case 3: distribution circuit in industry sector	18
5.2.4	Base case 4: dedicated circuit in services sector	20
5.2.5	Base case 5: dedicated circuit in industry sector	22
5.3 B	ase case Life Cycle Cost for consumer	
5.4 B	ase case Life Cycle Costs for society	24
5.5 E	U totals	25
5.5.1	Stock specific inputs	25
5.5.2	Environmental impact at EU-28	25
5.5.3	Economic assessment at EU-28	26
5.6 C	ross checks on EU-28 impact	27

LIST OF FIGURES

Figure 5-1 Services Sector- Base Cases 2 & 4	9
Figure 5-2 Industry Sector – Base Cases 3 & 5 10)

LIST OF TABLES

Table 5-1: base case identification	8
Table 5-2: bill of material per base case	11
Table 5-3: calculation of volume of packaged base case per meter cable	. 12
Table 5-4: EcoReport input: volume of packaged base case	12
Table 5-5: energy consumption per base case	13
Table 5-6: LCC input parameter per base case	
Table 5-7: EcoReport tool input parameters per base case	. 14
Table 5-8: Environmental impacts related to the use of one BC1 circuit per year	15
Table 5-9: Environmental impacts related to the use of one BC2 circuit per year	. 17
Table 5-10: Environmental impacts related to the use of one BC3 circuit per year	. 19
Table 5-11: Environmental impacts related to the use of one BC4 circuit per year	. 21
Table 5-12: Environmental impacts related to the use of one BC5 circuit per year	. 23
Table 5-13: Life Cycle Costs for consumer per base case	. 24
Table 5-14: Life Cycle Costs for society per base case	. 25
Table 5-15: Stock input parameters per base case	25
Table 5-16: EU-28 total annual environmental impacts from the installed stock	. 26
Table 5-17: Total annual expenditure in the EU-28 per base case	26
Table 5-18: EU-28 totals check: first method	. 27
Table 5-19: EU-28 totals check: second method	28
Table 5-20: EU-28 totals check: first method, corrected	28
Table 5-21: EU-28 totals check: second method, corrected	29

LIST OF ACRONYMS

- α_c corrected or circuit Load Factor
- BAT Best Available Technology
- BC Base Case
- BNAT Best Not (Yet) Available Technology
- BOM Bill Of Materials
- CSA conductor Cross-Sectional Area
- Cu Copper
- EC European Commission
- EOL End Of Life
- Kd Distribution factor
- Kf Load Form Factor
- LCA (environmental) Life Cycle Assessment
- LCC Life Cycle Costs
- LV Low Voltage
- MV Medium Voltage
- Pf Power Factor
- PVC PolyVinyl Chloride
- ρ conductor resistivity
- R Resistance
- TBC To Be Confirmed
- TBD To Be Defined
- VITO Flemish institute for Technological Research
- XLPE Cross-Linked PolyEthylene

Use of text background colours

Blue: draft text

Yellow: text requires attention to be commented Green: text changed in the last update

CHAPTER 5 **TASK 5: ENVIRONMENT & ECONOMICS**

The objective of Task 5 is to define one or two average EU product(s) or to choose a representative product category as the "Base Case" (BC) for the whole of the EU-28. Throughout the rest of the study, most of the environmental and Life Cycle Cost (LCC) analyses will be built on this BC. The BC is a conscious abstraction of reality, necessary for practical reasons (e.g. budget and time). The question if this abstraction leads to inadmissible conclusions for certain market segments will be addressed in the impactand sensitivity analysis. The description of the BC is the synthesis of the results of Tasks 1 to 4 and the point of reference for tasks 6 (improvement potential) and 7 (impact analysis).

The aim of this section is to assess environmental and economic impacts of the different base cases. The assessment is based on the updated version 3.06 of the EcoReport Tool¹, as provided with the MEErP 2011 methodology.

Remark: Further in this study the word "power cables" will be used as a general term for single core or multi-core LV power cables in buildings, unless otherwise stated.

Summary of Task 5: TBC

5.1 Product-specific inputs

This section collects all relevant quantitative BC information from previous tasks for the modelling exercise in the rest of Task 5. The input parameters are defined in previous tasks. In these tasks, a parameter may have a low/minimum, average/reference or high/maximum value. For the calculation in Task 5 the average/reference value of each parameter is used as input.

5.1.1 Identification of base cases

According to the MEErP methodology, base cases should reflect average EU products. Different products of similar functionalities, Bill Of Materials (BoM), technologies and efficiency can be compiled into a single BC, thus it does not always represent a real product.

¹ Legal notice of EcoReport tool

This document does not necessarily reflect the view of the European Commission. It was drafted to the best of ability within budget restrictions. VHK and the European Commission do not assume any liability for any material or immaterial damage from using this document or information contained therein.

Copyright ©Van Holsteijn en Kemna BV 2005-2011. Distribution rights European Commission 2005-2011. Duplication allowed if source, draft version and legal notice are mentioned.

For the identification of the base cases, three application types (power cable for use in lighting circuit, power cable for use in distribution circuit and power cable for use in dedicated circuit) and two different application sectors (services sector and industry sector) have been chosen.

The most appropriate base cases have been selected in accordance with the analysis presented in Tasks 2, 3 and 4 concerning the analysis of market and environmental and technical elements associated to products used across the EU. As introduced in Task 4, *five base cases* have been identified to assess the environmental and economic impacts over the life cycle:

- Base case 1: A typical power cable for use in typical lighting circuit in the services sector;
- Base case 2: A typical power cable for use in typical distribution circuit in the services sector (see Figure 5-1);
- Base case 3: A typical power cable for use in typical distribution circuit in the industry sector (see Figure 5-2);
- Base case 4: A typical power cable for use in typical dedicated circuit in the services sector (see Figure 5-1);
- Base case 5: A typical power cable for use in typical dedicated circuit in the industry sector (see Figure 5-2);

The characteristics of each BC are summarised in Table 5-1. These characteristics are relevant because they have an impact on the energy consumption and the BoM. The bases cases are explained more in detail in the next paragraphs.

	Unit	Bases cases definiton					
Base case id	Onit	BC1	BC2	BC4	A BC5		
		Services	Services	BC3 Industry	Services	Industry	
Sector		sector	sector	sector	sector	sector	
		Lighting	Distribution	Distribution	Dedicated	Dedicated	
Application circuit		circuit	circuit	circuit	circuit	circuit	
Transformer/Consumer	kVA	2.3	400	1250	43	108	
Voltage	V	230	400	400	400	400	
Load current Ib	Α	10	577	1804	62	156	
Cores		3	5	4	5	5	
CSA	mm²	1.5	120	300	10	35	
Installation Method (IEC 60364-5-52)		E	E	E	E	E	
Current Carying Capacity cable (IEC 60364-5-52 / Table							
B52.12)	Α	26	346	621	75	158	
Cables in parallel //		1	2	4	1	1	
Current-Carrying Capacity - total	Α	26	692	2484	75	158	
Reduction Factor (IEC 60364-5-52 / Table B52.17)		1	0.88	0.8	1	1	
Current-Carrying Capacity cable - total - reducted	А	26	609	1987	75	158	
Icircuit= Ir (circuit breaker setting)	Α	10	577	1804	62	156	
Single phase or 3-phase		1	3	3	3	3	
Imax per cable		10	289	451	62	156	
Circuit length	m	38.00	34.00	72.00	34.00	72.00	

Table 5-1: base case identification

Remarks:

- Installation Method E means cables arranged in a single layer on a perforated horizontal or vertical cable tray system (IEC 60364-5-52).
- Cable sizing is done according to the circuit breaker setting (Ir) and not according to the circuit breaker rating (In). For instance in base case 2 a 630 A (=In) circuit breaker will be used with Ir set at 609A.

Base Case 1: Services Sector - Lighting circuit

A 3G1.5 mm² power cable is commonly used in lighting circuits in EU 28 countries. A circuit breaker of 10 A (or 16 A) can be used to protect the cable against overload and short circuit. The maximum power which can be transmitted over the cable is (230V*10A=) 2.3 kVA.

Base Case 2: Services Sector – Distribution circuit

This base case includes the main distribution circuit - this means the LV power cable and protective device - between the 400 kVA MV/LV power transformer and the main LV distribution board (see Figure 5-1). In services sector smaller transformers are used compared to the industry. A 400 kVA transformer² is assumed as a common used transformer in services sector.

Two parallel cables of each 5G120 mm² are needed to transport the maximum power from the 400 kVA transformer to the main distribution board at the given circuit length.

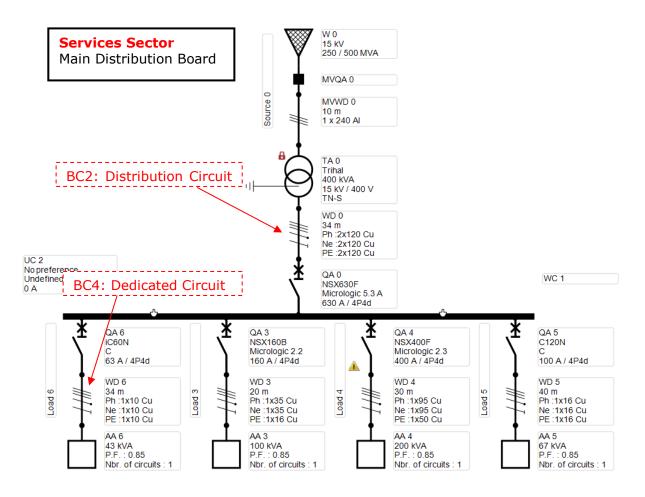


Figure 5-1 Services Sector- Base Cases 2 & 4

Base Case 3: Industry sector – Distribution Circuit

In general, transformers with a higher power rate are used in industry sector compared to the services sector. A 1250 kVA transformer is used in this BC as a common used transformer in industry².

The distribution circuit contains the main distribution circuit - this means the LV power cable and protective device - between the 1250 kVA MV/LV power transformer and the main LV distribution board (see Figure 5-2).

Four parallel cables of each 4 x 300 mm² are needed to transport the maximum power from the 1250 kVA transformer to the main distribution board at the given circuit length.

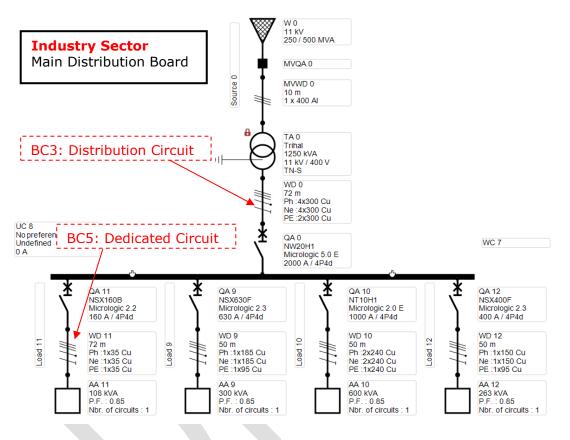


Figure 5-2 Industry Sector – Base Cases 3 & 5

Base Case 4: Services sector – Dedicated Circuit

A dedicated circuit forms the connection between a main- or sub-distribution board and a dedicated consumer (see Figure 5-1). A 5G10 mm² cable is selected for the services sector as a dedicated circuit cable. For the given cable length and cable section a load of 43 kVA can be connected to the 63 A circuit breaker in the distribution board.

Base Case 5: Industry Sector – Dedicated Circuit

² EU DG ENTR- Lot 2: Distribution and power transformers:

http://www.eceee.org/ecodesign/products/distribution_power_transformers/Final_report_Feb201

A 5G35 mm² cable is selected for the industry sector as a dedicated circuit cable. For the given cable length and cable section a load of 108 kVA can be connected to the 160 A circuit breaker in the distribution board (Figure 5-2).

5.1.2 Manufacturing of the product: Bill Of Materials

The manufacturing phase includes the extraction and processing of the required materials and the following steps necessary to produce and assembly one product. The MEErP 2011 EcoReport tool contains a list of materials and processes for which materials and energy indicators are provided (see for instance the "Material Code in EcoReport tool" reported in Table 5-8).

A frequently used LV power cable with the following specifications is selected as the reference cable:

- Conductor:
 - Material: Cu
 - Flexibility: Class 1 and 2
- Insulation material: XLPE (Cross-Linked Polyethylene)
- Sheath material: PVC (Polyvinyl Chloride)
- Voltage rating: 0.6/1 kV
- Single- and multicore
- Armoured: No
- Standard: IEC 60502-1

The BoM of this preparatory study has been selected according to information included in Task 2 and Task 4. An overview of the BoM per BC is shown in Table 5-2.

Base case id		BC1	BC2	BC3	BC4	BC5
		Services	Services	Industry	Services	Industry
Sector		sector	sector	sector	sector	sector
		Lighting	Distribution	Distribution	Dedicated	Dedicated
Application circuit		circuit	circuit	circuit	circuit	circuit
BoM per meter cable						
CSA	mm²	1.50	120.00	300.00	10.00	35.00
Cu	g/m	40.01	5,334.00	10,668.00	444.50	1,555.75
XLPE	g/m	12.88	238.41	448.07	43.97	99.92
PVC	g/m	66.57	478.79	820.05	129.78	210.34
Filler material	g/m	40.54	1,300.81	1,933.88	141.25	390.98
Total weight material	g/m	160.00	7,352.00	13,870.00	759.50	2,257.00
BoM per base case						
Cu	g	1,520.19	362,712.00	3,072,384.00	15,113.00	112,014.00
XLPE	g	489.62	16,211.82	129,043.88	1,495.02	7,194.35
PVC	g	2,529.63	32,557.38	236,173.68	4,412.49	15,144.74
Filler material	g	1,540.57	88,454.79	556,958.44	4,802.48	28,150.91
Total weight material	kg	6.08	499.94	3,994.56	25.82	162.50

Table 5-2:	bill of materi	ial per base case
------------	----------------	-------------------

5.1.3 Distribution phase: volume of packaged product

This phase includes the distribution of the packaged product. The volume of the packaged product (power cable) depends on the length of cable. For a certain cable section, the appropriate drum is selected. If multiple drum sizes (drum numbers) are available, the average drum size has been selected. The volume of this drum is then multiplied by length of cable of the BC (= circuit length x number of parallel cables) divided by the maximum length of cable on this drum. Drum characteristics are listed in Task 4. The calculation is shown in Table 5-3. An estimated spacing correction factor of 15% has been chosen for the extra space between drums during transport needed for handling. The EcoReport input is shown in Table 5-4.

	Unit	BC1	BC2	BC3	BC4	BC5
Cable outer diameter	mm	9.65	44.76	61.82	17.10	26.56
Drum Size		10	22	22	14	18
Max. cable length	m	2810	842.00	443.00	2448.00	1926.00
Drum Volume (formula	m³	0.70	6.04	9.04	1.80	4.04
Drum spacing	m³	0.11	0.91	1.36	0.27	0.61
Correction factor (spacing)	%	15%	15%	15%	15%	15%
Drum Corrected Volume	m³	0.81	6.95	10.40	2.07	4.65
Drum Weight	kg	50.00	450.00	595.00	125.00	290.00
Drum corrected volume / meter cable	m³/m	0.00029	0.00825	0.02348	0.00085	0.00241
Drum Weigth / meter cable	g/m	17.8	534.4	1343.1	51.1	150.6

Table 5-3: calculation of volume of packaged base case per meter cable

Table 5	-4: Ecol	Report input	: volume of	^c nackaged	hase case
Table J	LC01	cport input	volunic or	раскауси	base case

	Unit	Bases cases definiton					
Base case id		BC1	BC2	BC3	BC4	BC5	
		Services	Services	Industry	Services	Industry	
Sector		sector	sector	sector	sector	sector	
		Lighting	Distribution	Distribution	Dedicated	Dedicated	
Application circuit		circuit	circuit	circuit	circuit	circuit	
Volume package							
Volume package per meter cable	m3	0.000286477	0.008249843	0.023475576	0.000847092	0.002414355	
Volume package per base case	m3	0.01089	0.56099	6.76097	0.02880	0.17383	

5.1.4 Use phase

The use phase considers the amount of energy resources demanded during the lifetime of power cables. In this study, the amount of energy loss due to the resistance of the power cable is regarded as the energy consumption of the power cable. The calculated result of the energy consumption value per BC and the input parameters for this calculation are listed in Table 5-5. Average consumption of energy per BC has been calculated based on parameters, models and formulas described in Task 2 and Task 3.

Parameter	Base cases					
Base case id		BC1	BC2	BC3	BC4	BC5
		Services	Services	Industry	Services	Industry
Sector		sector	sector	sector	sector	sector
		Lighting	Distribution	Distribution	Dedicated	Dedicated
Application circuit		circuit	circuit	circuit	circuit	circuit
Loaded cores		2	6	12	3	3
Cables in parallel		1	2	4	1	1
Conductor material		Cu	Cu	Cu	Cu	Cu
Imax per cable	A	10	289	451	62	156
CSA	mm²	1.5	120	300	10	35
Length of circuit	m	38	34	72	34	72
ρ _t	$\Omega.mm^2/m$	0.0167	0.0167	0.0167	0.0167	0.0167
R (formula 3.2) per wire	Ω	0.423	0.005	0.004	0.057	0.034
Kd		0.38	1.00	1.00	1.00	1.00
Kf		1.27	1.21	1.02	1.21	1.01
ας		0.24	0.41	0.57	0.41	0.61
Pf		1.00	0.80	0.80	0.80	0.80
Annual energy loss (formula 3.5) per loaded core	kVAh	13.42	841.42	2441.35	466.74	2762.15
Annual energy loss (formula 3.5) per BC	kVAh	26.85	5048.54	29296.26	1400.21	8286.46
Annual energy transported (formula 3.6) per BC	kWh	6,233.33	1,383,543.21	5,121,229.66	148,730.89	465,153.33
Energy loss ratio (formula 3.7)		0.43%	0.36%	0.57%	0.94%	1.78%

Table 5-5: energy consumption per base case

5.1.5 End of Life (EoL)

Recycling of materials can avoid the extraction of raw materials and the production of virgin materials and this is modelled in EcoReport tool as credits (avoided impacts), i.e. negative impacts. Defaults values of the EcoReport have been used for recycling rates of the materials, except for ferro and non-ferro materials. For instance, default values for the recycling rate of metals and plastics are 94% and 29%, respectively. These recycling rates are considered comparable with the outcomes of the previous tasks and thus suitable for the current environmental analysis. Only the re-use of metals is set to 0% instead of 1% and recycling of metals is set to 95% instead of 94% (see section 3.3 in Task 3).

5.1.6 Life Cycle Cost Inputs

Average market data and consumer expenditure data have been estimated in Task 2. These have been summarized in Table 5-6 and form the data input for carrying out the economic assessment of the base cases. As mentioned in Task 3 there are no repair and maintenance costs for installed power cables.

	Unit	Bases cases definiton					
Base case id		BC1	BC2	BC3	BC4	BC5	
		Services	Services	Industry	Services	Industry	
Sector		sector	sector	sector	sector	sector	
		Lighting	Distribution	Distribution	Dedicated	Dedicated	
Application circuit		circuit	circuit	circuit	circuit	circuit	
LCC data							
Year		2010	2010	2010	2010	2010	
Electricity rate	€/kWh	0.11	0.11	0.11	0.11	0.11	
Product price for 1 meter cable	€	0.82	58.23	116.45	6.11	18.10	
Bace case product price	€	31.16	3959.30	33537.60	207.74	1303.20	
Base case installation cost	€	39.54	205.80	744.18	85.83	288.78	
Product life	Year	14.12	14.12	14.12	14.12	14.12	
Product service life	Year	13.42	13.42	13.42	13.42	13.42	

Table 5-6: LCC input parameter per base case

5.2 Base case environmental impact assessment (using EcoReport)

In this section, the EcoReport tool 2011 version 3.06 is used to calculate the outputs per environmental indicator and "cradle-to-grave" stages of a product life.

A summary of all input parameters values used in the EcoReport tool is listed in Table 5-7. For parameters not mentioned in Table 5-7 the default parameters of the EcoReport tool are used.

	11		Pere es						
	Unit	Base cases: ecoreport input							
Base case id		BC1	BC2	BC3	BC4	BC5			
CSA	mm²	1.5	120	300	10	35			
Cu	g/m	1520.19	362712.00	3072384.00	15113.00	112014.00			
XLPE	g/m	489.62	16211.82	129043.88	1495.02	7194.35			
PVC	g/m	2529.63	32557.38	236173.68	4412.49	15144.74			
Annual energy loss (formula 3.5) per BC	kVAh	26.85	5048.54	29296.26	1400.21	8286.46			
Volume	m3	0.01	0.56	6.76	0.03	0.17			
Product life	Year	14.12	14.12	14.12	14.12	14.12			
Bace case product price	€	31.16	3959.30	33537.60	207.74	1303.20			
Annual sales (base case units)	mln. Units	32.86	0.42	0.04	1.76	1.44			
EU Stock (base case units)	mln. Units	464.07	5.98	0.51	24.85	20.27			
Base case installation cost	€	39.54	205.80	744.18	85.83	288.78			
Electricity rate	€/kWh	0.11	0.11	0.11	0.11	0.11			
Filler material	g	1540.57	88454.79	556958.44	4802.48	28150.91			
EoL mass fraction to re-use, non-Ferro									
material	%	0%	0%	0%	0%	0%			
Product service life	Year	13.42	13.42	13.42	13.42	13.42			

Table 5-7:	FcoReport	tool inr	out paramete	ers ner	base case
Tubic 57.	LCONCPORT	1001 111	at paramete	is pu	buse cuse

5.2.1 Base case 1: lighting circuit in services sector

The environmental impacts related to the use of one BC1 circuit per year, calculated by means of the EcoReport tool, are shown in Table 5-8.

Table 5-8: Environmental impacts related to the use of one BC1 circuit per year

	Life Cycle phases>			PRODUCTION		DISTRI-	USE	END-OF-LIFE*			TOTAL
	Resources Use and Emissions		Material	Manuf.	Total	BUTION		Disposal	Recycl.	Stock	
	Materials Bulk Plastics	unit	1		340	1 1	3	189	154	0	0
	TecPlastics	g						189	154 0	0	0
- 8	Ferro	g			0		0	0	0	0	0
	Non-ferro	g			113		U	6	109	0	0
		g			0		<u>1</u> 0	0	109	0	0
- 8	Coating	g						ş			
	Electronics	g			0		0	0	0	0	0
	Misc.	g			0		0	0	0	0	0
	Extra	g			0		0	0	0	0	0
	Auxiliaries	g			0		0	0	0	0	0
	Refrigerant	g			0		0	0	0	0	0
	Total weight	g			453	ļ	5	194	263	0	0
	Other Resources & Waste			1		1		debet	credit		
						3					
		MJ	24	14	38	9	242	0 uebet	-6		283
11	Total Energy (GER)	MJ MJ	24	14 8	<u>38</u> 9	9	242 242	******			283 250
11 12	Total Energy (GER) of which, electricity (in primary MJ)						*****	0	-6		250
11 12 13	Total Energy (GER) of which, electricity (in primary MJ) Water (process)	MJ Itr	0	8	9 21	0	242	0 0 0	-6 0 -2		250 20
11 12 13 14	Total Energy (GER) of which, electricity (in primary MJ) Water (process) Water (cooling)	MJ Itr Itr	0 21 1	8 0 4	9 21 5	0 0 0	242 0 11	0 0 0 0	-6 0 -2 0		250 20 16
11 12 13 14 15	Total Energy (GER) of which, electricity (in primary MJ) Water (process)	MJ Itr	0 21	8 0	9 21	0 0	242 0	0 0 0	-6 0 -2		250 20 16 179
11 12 13 14 15 16	Total Energy (GER) of which, electricity (in primary MJ) Water (process) Water (cooling) Waste, non-haz./landfill Waste, hazardous/incinerated Emissions (Air)	MJ Itr Itr g g	0 21 1 3 0	8 0 4 43 0	9 21 5 46 0	0 0 0 8 0	242 0 11 125 4	0 0 0 0 0	6 0 -2 0 -1 0		250 20 16 179 4
11 12 13 14 15 16	Total Energy (GER) of which, electricity (in primary MJ) Water (process) Water (cooling) Waste, non-haz./landfill Waste, hazardous/incinerated Emissions (Air) Greenhouse Gases in GWP100	MJ Itr g g kg CO2 eq.	0 21 1 3 0	8 0 4 43 0	9 21 5 46 0 2	0 0 8 0	242 0 11 125 4 10	0 0 0 0 0	6 0 2 0 -1 0		250 20 16 179 4
11 12 13 14 15 16 17 18	Total Energy (GER) of which, electricity (in primary MJ) Water (process) Water (cooling) Waste, non-haz./landfill Waste, hazardous/incinerated Emissions (Air) Greenhouse Gases in GWP100 Acidification, emissions	MJ Itr g g kg CO2 eq. g SO2 eq.	0 21 1 3 0 0	8 0 4 43 0 1 3	9 21 5 46 0 2 2 37	0 0 8 0	242 0 11 125 4 10 46	0 0 0 0 0 0 0	6 0 -2 0 -1 0 0 -13		250 20 16 179 4 13 73
11 12 13 14 15 16 17 18 19	Total Energy (GER) of which, electricity (in primary MJ) Water (process) Water (cooling) Waste, non-haz./landfill Waste, hazardous/incinerated Emissions (Air) Greenhouse Gases in GWP100 Acidification, emissions Volatile Organic Compounds (VOC)	MJ Itr Itr g g g kg CO2 eq. g SO2 eq. g	0 21 1 3 0 0	8 0 4 43 0 1 1 3 0	9 21 5 46 0 2 2 37 0	0 0 8 0 1 2 0	242 0 11 125 4 10 46 5	0 0 0 0 0 0 0 0	6 0 2 0 1 0 0 -13 0		250 20 16 179 4 13 73 5
 11 12 13 14 15 16 17 18 19 20 	Total Energy (GER) of which, electricity (in primary MJ) Water (process) Water (cooling) Waste, non-haz./landfill Waste, hazardous/incinerated Emissions (Air) Greenhouse Gases in GWP100 Acidification, emissions Volatile Organic Compounds (VOC) Persistent Organic Pollutants (POP)	MJ Itr Itr g g g g kg CO2 eq. g SO2 eq. g ng i-Teq	0 21 1 3 0 0	8 0 4 43 0 1 3 0 0 0	9 21 5 46 0 0 2 37 0 0	0 0 8 0 1 2 0 0	242 0 11 125 4 10 46 5 1	0 0 0 0 0 0 0 0 0 0 0 0	6 0 2 0 1 0 -1 0 -13 0 0		250 20 10 179 4 4 13 73 73 5 1
 11 12 13 14 15 16 17 18 19 20 21 	Total Energy (GER) of which, electricity (in primary MJ) Water (process) Water (cooling) Waste, non-haz./landfill Waste, hazardous/incinerated Emissions (Air) Greenhouse Gases in GWP100 Acidification, emissions Volatile Organic Compounds (VOC) Persistent Organic Pollutants (POP) Heavy Metals	MJ Itr Itr g g g g kg CO2 eq. g SO2 eq. g ng i-Teq mg Ni eq.	0 21 1 3 0 0	8 0 4 43 0 1 1 3 0	9 21 5 46 0 2 2 37 0	0 0 8 0 1 2 0	242 0 11 125 4 10 46 5	0 0 0 0 0 0 0 0	6 0 2 0 1 0 0 -13 0		250 20 16 179 4 4 13 73 5 1
11 12 13 14 15 16 17 18 19 20 21 22	Total Energy (GER) of which, electricity (in primary MJ) Water (process) Water (cooling) Waste, non-haz./landfill Waste, hazardous/incinerated Emissions (Air) Greenhouse Gases in GWP100 Acidification, emissions Volatile Organic Compounds (VOC) Persistent Organic Pollutants (POP) Heavy Metals PAHs	MJ Itr Itr g g g g kg CO2 eq. g SO2 eq. g ng i-Teq	0 21 1 3 0 0	8 0 4 43 0 1 3 0 0 0	9 21 5 46 0 0 2 37 0 0	0 0 8 0 1 2 0 0	242 0 11 125 4 10 46 5 1	0 0 0 0 0 0 0 0 0 0 0 0	6 0 2 0 1 0 -1 0 -13 0 0		250 20 16 179 4 13 73 5 1 1 7
 11 12 13 14 15 16 17 18 19 20 21 22 	Total Energy (GER) of which, electricity (in primary MJ) Water (process) Water (cooling) Waste, non-haz./landfill Waste, hazardous/incinerated Emissions (Air) Greenhouse Gases in GWP100 Acidification, emissions Volatile Organic Compounds (VOC) Persistent Organic Pollutants (POP) Heavy Metals	MJ Itr Itr g g g g kg CO2 eq. g SO2 eq. g ng i-Teq mg Ni eq.	0 21 1 3 0 0	8 0 4 43 0 1 3 0 0 0 0 0	9 21 5 46 0 2 37 0 0 0 6	0 0 8 0 1 2 0 0 0 0	242 0 11 125 4 10 46 5 1 1 3	0 0 0 0 0 0 0 0 0 0 0 0 0	6 0 2 0 -1 0 -1 0 -13 0 0 -2		250 20 10 175 20 175 20 20 20 20 20 20 20 20 20 20 20 20 20
11 12 13 14 15 16 17 18 19 20 21 22 23	Total Energy (GER) of which, electricity (in primary MJ) Water (process) Water (cooling) Waste, non-haz./landfill Waste, hazardous/incinerated Emissions (Air) Greenhouse Gases in GWP100 Acidification, emissions Volatile Organic Compounds (VOC) Persistent Organic Pollutants (POP) Heavy Metals PAHs	MJ Itr Itr g g g kg CO2 eq. g SO2 eq. g ng i-Teq mg Ni eq. mg Ni eq.	0 21 1 3 0 0 1 34 0 0 6 1	8 0 4 43 0 1 3 0 0 0 0 0 0 0	9 21 5 46 0 2 37 0 0 6 1	0 0 8 0 1 2 0 0 0 0 0 0 0	242 0 11 125 4 10 46 5 1 1 3 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6 0 2 0 -1 0 0 -13 0 0 -13 0 0 -2 0		250 20 16 179 4 13 73 5 11 77
11 12 13 14 15 16 17 18 19 20 21 22 23	Total Energy (GER) of which, electricity (in primary MJ) Water (process) Water (cooling) Waste, non-haz./landfill Waste, hazardous/incinerated Emissions (Air) Greenhouse Gases in GWP100 Acidification, emissions Volatile Organic Compounds (VOC) Persistent Organic Pollutants (POP) Heavy Metals PAHs Particulate Matter (PM, dust)	MJ Itr Itr g g g kg CO2 eq. g SO2 eq. g ng i-Teq mg Ni eq. mg Ni eq.	0 21 1 3 0 0 1 34 0 0 6 1	8 0 4 43 0 1 3 0 0 0 0 0 0 0	9 21 5 46 0 2 37 0 0 6 1	0 0 8 0 1 2 0 0 0 0 0 0 0	242 0 11 125 4 10 46 5 1 1 3 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6 0 2 0 -1 0 0 -13 0 0 -13 0 0 -2 0		

5.2.2 Base case 2: distribution circuit in services sector

The environmental impacts related to the use of one BC2 circuit per year, calculated by means of the EcoReport tool, are shown in Table 5-9.

Table 5-9: Environmental impacts related to the use of one BC2 circuit per year

Life Cycle phases>		F	PRODUCTION		DISTRI-	USE	EN	TOTAL		
Resources Use and Emissions		Material	Manuf.	Total	BUTION		Disposal	Recycl.	Stock	
Materials 1 Bulk Plastics	unit	1		0.715		97	F 207	4 410	0	
	g			9,715			5,397	4,416	0	<u>†</u>
2 TecPlastics	g			0		0	0	0	0	(
3 Ferro	g			0		0	0	0	0	
4 Non-ferro	g			25,680		257	1,297	24,640	0	(
5 Coating	g			0		0	0	0	0	(
6 Electronics	g			0		0	0	0	0	
7 Misc.	g			0		0	0	0	0	(
8 Extra	g			0		0	0	0	0	
9 Auxiliaries	g			0		0	0	0	0	
.0 Refrigerant	g			0		0	0	0	0	
Total weight	g			35,395		354	6,694	29,056	0	
Other Resources & Waste							· · · · · · · · · · · · · · · · · · ·	*****	r	1
							debet	credit		
	T						· · · · · · · · · · · · · · · · · · ·	*****	r	
1 Total Energy (GER)	MJ	3,304	397	3,701	55	45,470	22	-1,162		******
1 Total Energy (GER) 2 of which, electricity (in primary MJ)	MJ	11	239	250	0	45,437	22 0	-1,162 -1		45,68
 Total Energy (GER) of which, electricity (in primary MJ) Water (process) 	MJ Itr	11 597	239 4	250 600	0 0	45,437 6	22 0 0	-1,162 -1 -47		45,68 55
 Total Energy (GER) of which, electricity (in primary MJ) Water (process) Water (cooling) 	MJ	11 597 36	239 4 113	250 600 148	0 0 0	45,437 6 2,020	22 0 0 0	-1,162 -1 -47 -3		45,68 55 2,16
 Total Energy (GER) of which, electricity (in primary MJ) Water (process) Water (cooling) Waste, non-haz./landfill 	MJ Itr Itr g	11 597 36 357	239 4	250 600	0 0	45,437 6	22 0 0 0 7	-1,162 -1 -47		45,68 55 2,16
 Total Energy (GER) of which, electricity (in primary MJ) Water (process) Water (cooling) 	MJ Itr Itr	11 597 36	239 4 113	250 600 148	0 0 0	45,437 6 2,020	22 0 0 0	-1,162 -1 -47 -3		45,68 55 2,16 24,93
 Total Energy (GER) of which, electricity (in primary MJ) Water (process) Water (cooling) Waste, non-haz./landfill Waste, hazardous/incinerated Emissions (Air) 	MJ Itr Itr g g	11 597 36 357 12	239 4 113 1,244 0	250 600 148 1,600 12	0 0 31 1	45,437 6 2,020 23,419 717	22 0 0 0 7 0	-1,162 -1 -47 -3 -122 -3		45,68 55 2,16 24,93 72
 Total Energy (GER) of which, electricity (in primary MJ) Water (process) Water (cooling) Waste, non-haz./landfill Waste, hazardous/incinerated Emissions (Air) Greenhouse Gases in GWP100 	MJ Itr g g kg CO2 eq.	11 597 36 357 12 179	239 4 113 1,244 0 22	250 600 148 1,600 12 201	0 0 31 1	45,437 6 2,020 23,419 717 1,941	22 0 0 7 0	-1,162 -1 -47 -3 -122 -3 -62		45,68 55 2,16 24,93 72 2,08
 Total Energy (GER) of which, electricity (in primary MJ) Water (process) Water (cooling) Waste, non-haz./landfill Waste, hazardous/incinerated Emissions (Air) Greenhouse Gases in GWP100 Acidification, emissions 	MJ Itr Itr g g	11 597 36 357 12	239 4 113 1,244 0	250 600 148 1,600 12	0 0 31 1	45,437 6 2,020 23,419 717	22 0 0 0 7 0	-1,162 -1 -47 -3 -122 -3		45,68 55 2,16 24,93 72 2,08
 Total Energy (GER) of which, electricity (in primary MJ) Water (process) Water (cooling) Waste, non-haz./landfill Waste, hazardous/incinerated Emissions (Air) Greenhouse Gases in GWP100 	MJ Itr g g kg CO2 eq.	11 597 36 357 12 179	239 4 113 1,244 0 22	250 600 148 1,600 12 201	0 0 31 1	45,437 6 2,020 23,419 717 1,941	22 0 0 7 0	-1,162 -1 -47 -3 -122 -3 -62		45,68 55 2,16 24,93 72 2,08 13,43
 Total Energy (GER) of which, electricity (in primary MJ) Water (process) Water (cooling) Waste, non-haz./landfill Waste, hazardous/incinerated Emissions (Air) Greenhouse Gases in GWP100 Acidification, emissions 	MJ Itr g g g kg CO2 eq. g SO2 eq. g	11 597 36 357 12 179 7,523	239 4 113 1,244 0 22 95	250 600 148 1,600 12 201 7,617	0 0 31 1 4 11	45,437 6 2,020 23,419 717 1,941 8,658	22 0 0 7 0 0	-1,162 -1 -47 -3 -122 -3 -62 -62 -2,852		45,68 55 2,16 24,93 72 2,08 13,43 1,01
 Total Energy (GER) of which, electricity (in primary MJ) Water (process) Water (cooling) Waste, non-haz./landfill Waste, hazardous/incinerated Emissions (Air) Greenhouse Gases in GWP100 Acidification, emissions Volatile Organic Compounds (VOC) 	MJ Itr g g g kg CO2 eq. g SO2 eq. g	11 597 36 357 12 179 7,523 0	239 4 113 1,244 0 22 95 0	250 600 148 1,600 12 201 7,617 0	0 0 31 1 4 11 1	45,437 6 2,020 23,419 717 1,941 8,658 1,015	22 0 0 7 0 0 2 7 0 0 4 0	-1,162 -1 -47 -3 -122 -3 -122 -3 -62 -2,852 0		45,68 55 2,16 24,93 72 2,08 13,43 1,01 16
 Total Energy (GER) of which, electricity (in primary MJ) Water (process) Water (cooling) Waste, non-haz./landfill Waste, hazardous/incinerated Emissions (Air) Greenhouse Gases in GWP100 Acidification, emissions Volatile Organic Compounds (VOC) Persistent Organic Pollutants (POP) 	MJ Itr g g g g kg CO2 eq. g SO2 eq. g ng i-Teq	11 597 36 357 12 12 179 7,523 0 0 96	239 4 113 1,244 0 22 95 0 0 0	250 600 148 1,600 12 201 7,617 0 96	0 0 31 1 4 11 1 0	45,437 6 2,020 23,419 717 1,941 8,658 1,015 107	22 0 0 7 0 0 7 0 0 4 0 0 0	-1,162 -1 -47 -3 -122 -3 -122 -3 -62 -2,852 -0 -37		45,68 55 2,16 24,93 72 2,08 13,43 1,01 16 1,35
 Total Energy (GER) of which, electricity (in primary MJ) Water (process) Water (cooling) Waste, non-haz./landfill Waste, hazardous/incinerated Emissions (Air) Greenhouse Gases in GWP100 Acidification, emissions Volatile Organic Compounds (VOC) Persistent Organic Pollutants (POP) Heavy Metals 	MJ Itr g g g g kg CO2 eq. g SO2 eq. g ng i-Teq mg Ni eq.	11 597 36 357 12 179 7,523 0 96 1,414	239 4 113 1,244 0 22 95 0 0 0 0	250 600 148 1,600 12 201 7,617 0 96 1,414	0 0 31 1 4 11 1 0 2	45,437 6 2,020 23,419 717 1,941 8,658 1,015 107 474	22 0 0 7 0 0 7 0 0 4 0 0 0 1	-1,162 -1 -47 -3 -122 -3 -62 -2,852 0 -37 -537		45,68 55 2,16 24,93 72 2,08 13,43 1,01 16 1,35 19
 Total Energy (GER) of which, electricity (in primary MJ) Water (process) Water (cooling) Waste, non-haz./landfill Waste, hazardous/incinerated Emissions (Air) Greenhouse Gases in GWP100 Acidification, emissions Volatile Organic Compounds (VOC) Persistent Organic Pollutants (POP) Heavy Metals PAHs Particulate Matter (PM, dust) 	MJ Itr g g g g g kg CO2 eq. gSO2 eq. g ng i-Teq mg Ni eq. mg Ni eq.	11 597 36 357 12 12 179 7,523 0 96 1,414 139	239 4 113 1,244 0 22 95 0 0 0 0 0 0	250 600 148 1,600 12 201 7,617 0 96 1,414 139	0 0 31 1 4 11 1 0 2 2	45,437 6 2,020 23,419 717 1,941 8,658 1,015 107 474 107	22 0 0 7 0 7 0 0 4 0 0 0 1 0 0	-1,162 -1 -47 -3 -122 -3 -3 -62 -2,852 0 -37 -537 -53		45,68 55 2,16 24,93 72 2,08 13,43 1,01 16 1,35 19
 Total Energy (GER) of which, electricity (in primary MJ) Water (process) Water (cooling) Waste, non-haz./landfill Waste, hazardous/incinerated Emissions (Air) Greenhouse Gases in GWP100 Acidification, emissions Volatile Organic Compounds (VOC) Persistent Organic Pollutants (POP) Heavy Metals PAHs 	MJ Itr g g g g g kg CO2 eq. gSO2 eq. g ng i-Teq mg Ni eq. mg Ni eq.	11 597 36 357 12 12 179 7,523 0 96 1,414 139	239 4 113 1,244 0 22 95 0 0 0 0 0 0	250 600 148 1,600 12 201 7,617 0 96 1,414 139	0 0 31 1 4 11 1 0 2 2	45,437 6 2,020 23,419 717 1,941 8,658 1,015 107 474 107	22 0 0 7 0 7 0 0 4 0 0 0 1 0 0	-1,162 -1 -47 -3 -122 -3 -3 -62 -2,852 0 -37 -537 -53		48,08 45,68 55 2,16 24,93 72 2,08 13,43 1,01 16 1,35 19 37 1,71

5.2.3 Base case 3: distribution circuit in industry sector

The environmental impacts related to the use of one BC3 circuit per year, calculated by means of the EcoReport tool, are shown in Table 5-10.

Table 5-10: Environmental impacts related to the use of one BC3 circuit per year

Life Cycle phases>			PRODUCTION		DISTRI-	USE	El	ND-OF-LIFE*		TOTAL
Resources Use and Emissions		Material	Manuf.	Total	BUTION		Disposal	Recycl.	Stock	
Materials	unit									
1 Bulk Plastics	g	1		65,290		653	36,269	29,674	0	(
2 TecPlastics	g			0		0	0	0	0	(
3 Ferro	g			0		0	0	0	0	(
4 Non-ferro	g			217,525		2,175	10,985	208,715	0	(
5 Coating	g			0		0	0	0	0	(
6 Electronics	g			0		0	0	0	0	(
7 Misc.	g			0		0	0	0	0	(
8 Extra	g			0		0	0	0	0	(
9 Auxiliaries	g			0		0	0	0	0	(
.0 Refrigerant	g			0		0	0	0	0	(
Total weight	g	1		282,815		2,828	47,254	238,389	0	
1 Total Energy (GER)	MJ	27,512	2,667	30,179	582	263,941	167	-9,803		285,06
Other Resources & Waste							debet	see note! credit		
1 Total Energy (GER)				*****			·• f			285,066
										8
2 of which, electricity (in primary MJ)	MJ	90	1,606	1,695	1	263,667	0	-7		+
3 Water (process)	ltr	3,917	24	3,941	0	39	0	-307		3,673
3 Water (process) 4 Water (cooling)	ltr ltr	3,917 283	24 757	3,941 1,041	0 0	39 11,721	0 0	-307 -22		3,673 12,740
3 Water (process) 4 Water (cooling) 5 Waste, non-haz./landfill	ltr Itr g	3,917 283 2,998	24 757 8,357	3,941 1,041 11,356	0 0 294	39 11,721 135,906	0 0 56	-307 -22 -1,034		3,673 12,740 146,578
3 Water (process) 4 Water (cooling)	ltr ltr	3,917 283	24 757	3,941 1,041	0 0	39 11,721	0 0	-307 -22		3,673 12,740 146,578
3 Water (process) 4 Water (cooling) 5 Waste, non-haz./landfill	ltr Itr g	3,917 283 2,998	24 757 8,357	3,941 1,041 11,356	0 0 294	39 11,721 135,906	0 0 56	-307 -22 -1,034		3,673 12,740 146,578
 3 Water (process) 4 Water (cooling) 5 Waste, non-haz./landfill 6 Waste, hazardous/incinerated 	ltr Itr g	3,917 283 2,998	24 757 8,357	3,941 1,041 11,356	0 0 294	39 11,721 135,906	0 0 56	-307 -22 -1,034		3,673 12,740 146,578 4,245
 3 Water (process) 4 Water (cooling) 5 Waste, non-haz./landfill 6 Waste, hazardous/incinerated Emissions (Air) 7 Greenhouse Gases in GWP100 	ltr ltr g g	3,917 283 2,998 102	24 757 8,357 0	3,941 1,041 11,356 102	0 0 294 6	39 11,721 135,906 4,161	0 0 56 0	-307 -22 -1,034 -24		3,673 12,740 146,578 4,245 12,414
 3 Water (process) 4 Water (cooling) 5 Waste, non-haz./landfill 6 Waste, hazardous/incinerated Emissions (Air) 	ltr ltr g g kg CO2 eq.	3,917 283 2,998 102 1,482	24 757 8,357 0 148	3,941 1,041 11,356 102 1,630	0 0 294 6 37	39 11,721 135,906 4,161 11,270	0 0 56 0	-307 -22 -1,034 -24 -523		3,673 12,740 146,578 4,245 12,414 90,756
 3 Water (process) 4 Water (cooling) 5 Waste, non-haz./landfill 6 Waste, hazardous/incinerated Emissions (Air) 7 Greenhouse Gases in GWP100 8 Acidification, emissions 	ltr ltr g g kg CO2 eq. g SO2 eq.	3,917 283 2,998 102 1,482 63,689	24 757 8,357 0 148 638	3,941 1,041 11,356 102 1,630 64,327	0 0 294 6 37 114	39 11,721 135,906 4,161 11,270 50,441	0 0 56 0	-307 -22 -1,034 -24 -523 -24,157		3,67 12,74(146,57 4,24 12,41 90,75(5,90
 3 Water (process) 4 Water (cooling) 5 Waste, non-haz./landfill 6 Waste, hazardous/incinerated Emissions (Air) 7 Greenhouse Gases in GWP100 8 Acidification, emissions 9 Volatile Organic Compounds (VOC) 	ltr ltr g g kg CO2 eq. g SO2 eq. g	3,917 283 2,998 102 1,482 63,689 4	24 757 8,357 0 148 638 0	3,941 1,041 11,356 102 1,630 64,327 4	0 0 294 6 37 114 10	39 11,721 135,906 4,161 11,270 50,441 5,889	0 0 56 0 1 32 0	-307 -22 -1,034 -24 -523 -24,157 -1		3,67 12,74 146,57 4,24 4,24 12,41 90,75 5,90 1,13
 3 Water (process) 4 Water (cooling) 5 Waste, non-haz./landfill 6 Waste, hazardous/incinerated Emissions (Air) 7 Greenhouse Gases in GWP100 8 Acidification, emissions 9 Volatile Organic Compounds (VOC) 10 Persistent Organic Pollutants (POP) 	ltr ltr g g g kg CO2 eq. g SO2 eq. g ng i-Teq	3,917 283 2,998 102 1,482 63,689 4 814	24 757 8,357 0 148 638 0 0	3,941 1,041 11,356 102 1,630 64,327 4 814	0 0 294 6 37 114 10 2	39 11,721 135,906 4,161 11,270 50,441 5,889 623	0 0 56 0 1 32 0 0	-307 -22 -1,034 -24 -523 -24,157 -1 -309		3,67 12,74 146,57 4,24 12,41 90,75 5,90 1,13 10,23
 3 Water (process) 4 Water (cooling) 5 Waste, non-haz./landfill 6 Waste, hazardous/incinerated Emissions (Air) 7 Greenhouse Gases in GWP100 8 Acidification, emissions 9 Volatile Organic Compounds (VOC) Persistent Organic Pollutants (POP) 11 Heavy Metals 	ltr ltr g g kg CO2 eq. g SO2 eq. g ng i-Teq mg Ni eq.	3,917 283 2,998 102 1,482 63,689 4 814 11,977	24 757 8,357 0 148 638 0 0 0 0	3,941 1,041 11,356 102 1,630 64,327 4 814 11,977	0 0 294 6 37 114 10 2 15	39 11,721 135,906 4,161 11,270 50,441 5,889 623 2,786	0 0 56 0 1 32 0 0 0 12	-307 -22 -1,034 -24 -523 -24,157 -1 -309 -4,551		3,67 12,74 146,57 4,24 12,41 90,75 5,90 1,13 10,23 1,37
 Water (process) Water (cooling) Waste, non-haz./landfill Waste, hazardous/incinerated Emissions (Air) Greenhouse Gases in GWP100 Acidification, emissions Volatile Organic Compounds (VOC) Persistent Organic Pollutants (POP) Heavy Metals PAHs Particulate Matter (PM, dust) 	ltr ltr g g kg CO2 eq. g SO2 eq. g ng i-Teq mg Ni eq. mg Ni eq.	3,917 283 2,998 102 1,482 63,689 4 814 11,977 1,173	24 757 8,357 0 148 638 0 0 0 0 0 1	3,941 1,041 11,356 102 1,630 64,327 4 814 11,977 1,174	0 0 294 6 37 114 10 2 15 21	39 11,721 135,906 4,161 11,270 50,441 5,889 623 2,786 627	0 0 56 0 1 32 0 0 12 0	-307 -22 -1,034 -24 -523 -523 -24,157 -1 -309 -4,551 -445		3,673 12,740 146,578 4,242 12,414 90,756 5,901 1,130 10,238 1,378
 Water (process) Water (cooling) Waste, non-haz./landfill Waste, hazardous/incinerated Emissions (Air) Greenhouse Gases in GWP100 Acidification, emissions Volatile Organic Compounds (VOC) Persistent Organic Pollutants (POP) Heavy Metals PAHs 	ltr ltr g g kg CO2 eq. g SO2 eq. g ng i-Teq mg Ni eq. mg Ni eq.	3,917 283 2,998 102 1,482 63,689 4 814 11,977 1,173	24 757 8,357 0 148 638 0 0 0 0 0 1	3,941 1,041 11,356 102 1,630 64,327 4 814 11,977 1,174	0 0 294 6 37 114 10 2 15 21	39 11,721 135,906 4,161 11,270 50,441 5,889 623 2,786 627	0 0 56 0 1 32 0 0 12 0	-307 -22 -1,034 -24 -523 -523 -24,157 -1 -309 -4,551 -445		265,357 3,673 12,740 146,578 4,245 12,414 90,756 5,901 1,130 10,238 1,378 3,189

5.2.4 Base case 4: dedicated circuit in services sector

The environmental impacts related to the use of one BC4 circuit per year, calculated by means of the EcoReport tool, are shown in Table 5-11.

Table 5-11: Environmental impacts related to the use of one BC4 circuit per year

Life Cycle phases>		I	PRODUCTION		DISTRI-	USE	Eľ	ND-OF-LIFE*		TOTAL
Resources Use and Emissions		Material	Manuf.	Total	BUTION		Disposal	Recycl.	Stock	
Materials	unit									
1 Bulk Plastics	g	1		758		8	421	345	0	C
2 TecPlastics	g			0		0	0	0	0	0
3 Ferro	g			0		0	0	0	0	(
4 Non-ferro	g			1,070		11	54	1,027	0	(
5 Coating	g	1		0		0	0	0	0	(
6 Electronics	g			0		0	0	0	0	(
7 Misc.	g			0		0	0	0	0	C
8 Extra	g			0		0	0	0	0	C
9 Auxiliaries	g			0		0	0	0	0	C
10 Refrigerant	g			0		0	0	0	0	C
Total weight	g	1		1,828		18	475	1,371	0	(
1 Total Energy (GER)	MJ	150	31	181	10	12,603	1	-49		12,74
Other Resources & Waste							debet	see note! credit		
1 Total Enormy (CEP)	MI	150	31	181	10	12.603	1 1	-49		12 746
2 of which, electricity (in primary MJ)	MJ	1	19	20	0	12,602	0	0		12,622
2 of which, electricity (in primary MJ) 3 Water (process)	MJ ltr	1 46	19 0	20 46	0 0	12,602 0	0 0	0 -4		12,622 43
 2 of which, electricity (in primary MJ) 3 Water (process) 4 Water (cooling) 	MJ Itr Itr	1 46 3	19 0 9	20 46 12	0 0 0	12,602 0 560	0 0 0	0 -4 0		12,622 43 572
 of which, electricity (in primary MJ) Water (process) Water (cooling) Waste, non-haz./landfill 	MJ Itr Itr g	1 46 3 17	19 0 9 97	20 46 12 114	0 0 0 9	12,602 0 560 6,494	0 0 0	0 -4 0 -5		12,622 43 572 6,612
 2 of which, electricity (in primary MJ) 3 Water (process) 4 Water (cooling) 	MJ Itr Itr	1 46 3	19 0 9	20 46 12	0 0 0	12,602 0 560	0 0 0	0 -4 0		12,622 43 572 6,612
 2 of which, electricity (in primary MJ) 3 Water (process) 4 Water (cooling) 5 Waste, non-haz./landfill 6 Waste, hazardous/incinerated 	MJ Itr Itr g	1 46 3 17	19 0 9 97	20 46 12 114	0 0 0 9	12,602 0 560 6,494	0 0 0	0 -4 0 -5		12,622 43 572 6,612
 of which, electricity (in primary MJ) Water (process) Water (cooling) Waste, non-haz./landfill 	MJ Itr Itr g	1 46 3 17	19 0 9 97	20 46 12 114	0 0 0 9	12,602 0 560 6,494	0 0 0	0 -4 0 -5		12,622 43 572 6,612 200
 2 of which, electricity (in primary MJ) 3 Water (process) 4 Water (cooling) 5 Waste, non-haz./landfill 6 Waste, hazardous/incinerated Emissions (Air) 7 Greenhouse Gases in GWP100 	MJ Itr g g kg CO2 eq.	1 46 3 17 1	19 0 9 97 0	20 46 12 114 1	0 0 9 0	12,602 0 560 6,494 199 538	0 0 0 0	0 -4 0 -5 0		12,622 43 572 6,612 200
 2 of which, electricity (in primary MJ) 3 Water (process) 4 Water (cooling) 5 Waste, non-haz./landfill 6 Waste, hazardous/incinerated Emissions (Air) 	MJ Itr g g	1 46 3 17 1	19 0 9 97 0	20 46 12 114 1 10	0 0 9 0	12,602 0 560 6,494 199	0 0 0 0	0 -4 -5 0		12,622 43 577 6,617 200 540 2,588
 2 of which, electricity (in primary MJ) 3 Water (process) 4 Water (cooling) 5 Waste, non-haz./landfill 6 Waste, hazardous/incinerated Emissions (Air) 7 Greenhouse Gases in GWP100 8 Acidification, emissions 9 Volatile Organic Compounds (VOC) 	MJ Itr g g g kg CO2 eq. g SO2 eq. g	1 46 3 17 1 1 8 314	19 0 9 97 0 2 7	20 46 12 114 1 1 10 322	0 0 9 0	12,602 0 560 6,494 199 538 2,384	0 0 0 0 0	0 -4 -5 0 -5 -3 -119		12,622 43 577 6,612 200 540 2,583 282
 12 of which, electricity (in primary MJ) 13 Water (process) 14 Water (cooling) 15 Waste, non-haz./landfill 16 Waste, hazardous/incinerated Emissions (Air) 17 Greenhouse Gases in GWP100 18 Acidification, emissions 19 Volatile Organic Compounds (VOC) 10 Persistent Organic Pollutants (POP) 	MJ Itr g g g kg CO2 eq. g SO2 eq. g ng i-Teq	1 46 3 17 1 1 8 314 0	19 0 97 0 2 7 0	20 46 12 114 1 1 10 322 0	0 0 9 0 1 2 0	12,602 0 560 6,494 199 538 2,384 281	0 0 0 0 0 0 0 0 0	0 -4 0 -5 0 -3 -119 0		12,622 43 577 6,612 200 546 2,589 283 33
 2 of which, electricity (in primary MJ) 3 Water (process) 4 Water (cooling) 5 Waste, non-haz./landfill 6 Waste, hazardous/incinerated Emissions (Air) 7 Greenhouse Gases in GWP100 8 Acidification, emissions 9 Volatile Organic Compounds (VOC) 	MJ Itr g g g g kg CO2 eq. g SO2 eq. g ng i-Teq mg Ni eq.	1 46 3 17 1 1 8 314 0 4	19 0 97 0 0 2 7 0 0 0	20 46 12 114 1 1 10 322 0 4	0 0 9 0 1 2 0 0	12,602 0 560 6,494 199 538 2,384 281 29	0 0 0 0 0 0 0 0 0 0 0 0	0 -4 0 -5 0 -3 -119 0 -2		12,62 4 57 6,61 200 540 2,58 28 33 31 16
 12 of which, electricity (in primary MJ) 13 Water (process) 14 Water (cooling) 15 Waste, non-haz./landfill 16 Waste, hazardous/incinerated Emissions (Air) 17 Greenhouse Gases in GWP100 18 Acidification, emissions 19 Volatile Organic Compounds (VOC) 10 Persistent Organic Pollutants (POP) 11 Heavy Metals 	MJ Itr g g g kg CO2 eq. g SO2 eq. g ng i-Teq	1 46 3 17 1 1 8 8 314 0 4 59	19 0 97 00 2 7 0 0 0 0 0	20 46 12 114 1 10 322 0 4 59	0 0 9 0 1 2 0 0 0 0	12,602 0 560 6,494 199 538 2,384 281 29 128	0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 -4 0 -5 0 -5 0 -5 0 -5 0 -2 -22 -22		12,62 4 57 6,61 200 54 2,58 28 33 35 16 33
 2 of which, electricity (in primary MJ) 3 Water (process) 4 Water (cooling) 5 Waste, non-haz./landfill 6 Waste, hazardous/incinerated Emissions (Air) 7 Greenhouse Gases in GWP100 8 Acidification, emissions 9 Volatile Organic Compounds (VOC) 20 Persistent Organic Pollutants (POP) 21 Heavy Metals 22 PAHs 23 Particulate Matter (PM, dust) 	MJ Itr g g g g kg CO2 eq. g SO2 eq. g ng i-Teq mg Ni eq. mg Ni eq.	1 46 3 17 1 1 8 8 314 0 0 4 4 59 6	19 0 97 0 2 7 0 0 0 0 0 0 0	20 46 12 114 1 10 322 0 4 59 6	0 0 9 0 1 2 0 0 0 0 0 0	12,602 0 560 6,494 199 538 2,384 281 29 128 29	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 -4 0 -5 0 0 -3 -119 0 -2 -22 -22 -2		12,622 43 572 6,612 200 546 2,585 282 282 32 165 33
 2 of which, electricity (in primary MJ) 3 Water (process) 4 Water (cooling) 5 Waste, non-haz./landfill 6 Waste, hazardous/incinerated 6 Emissions (Air) 7 Greenhouse Gases in GWP100 8 Acidification, emissions 9 Volatile Organic Compounds (VOC) 9 Persistent Organic Pollutants (POP) 11 Heavy Metals 2 PAHs 	MJ Itr g g g g kg CO2 eq. g SO2 eq. g ng i-Teq mg Ni eq. mg Ni eq.	1 46 3 17 1 1 8 8 314 0 0 4 4 59 6	19 0 97 0 2 7 0 0 0 0 0 0 0	20 46 12 114 1 10 322 0 4 59 6	0 0 9 0 1 2 0 0 0 0 0 0	12,602 0 560 6,494 199 538 2,384 281 29 128 29	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 -4 0 -5 0 0 -3 -119 0 -2 -22 -22 -2		12,740 12,622 43 572 6,612 200 546 2,589 282 32 165 33 61 118

5.2.5 Base case 5: dedicated circuit in industry sector

The environmental impacts related to the use of one BC5 circuit per year, calculated by means of the EcoReport tool, are shown in Table 5-12.

	Life Cycle phases>			PRODUCTION		DISTRI-	USE	EN	ND-OF-LIFE*		TOTAL
	Resources Use and Emissions		Material	Manuf.	Total	BUTION		Disposal	Recycl.	Stock	
	Materials	unit									
1	Bulk Plastics	g			3,575		36	1,986	1,625	0	C
2	TecPlastics	g			0		0	0	0	0	(
3	Ferro	g			0		0	0	0	0	(
4	Non-ferro	g			7,931		79	400	7,609	0	(
5	Coating	g			0		0	0	0	0	(
6	Electronics	g			0		0	0	0	0	(
7	Misc.	g			0		0	0	0	0	(
8	Extra	g			0		0	0	0	0	(
9	Auxiliaries	g			0		0	0	0	0	(
10	Refrigerant	g			0		0	0	0	0	(
	Total weight	g			11,505		115	2,386	9,234	0	(
1	Other Resources & Waste	MI	1 0/2	146	1 1 9 0	22	74 580	debet	credit	1	75 //
11	Total Energy (GER)	MJ	1,043	146	1,189	23	74,589	8	-361	<u> </u>	75,44
	of which, electricity (in primary MJ)	MJ	5	88	93	0	74,578	0	0		74,67
	Water (process)	ltr	214	1	215	0	2	0	-17		203
1.2		l te u	16	41	57	0	3,315	0	-1		3,371
	Water (cooling)	ltr	TO	++ (57	0	3,313	0	1		
L4	Water (cooling) Waste, non-haz./landfill	1	116	458	574	15	38,434	3	-38		38,987
L4 L5		g g		↓				++			*****
L4 L5 L6	Waste, non-haz./landfill Waste, hazardous/incinerated Emissions (Air)	g	116 5	458 0	574 5	15 0	38,434 1,177	3	-38 -1		1,18
L4 L5 L6	Waste, non-haz./landfill Waste, hazardous/incinerated Emissions (Air) Greenhouse Gases in GWP100	g g kg CO2 eq.	116 5 56	458 0	574 5 65	15 0 2	38,434 1,177 3,184	3 0	-38 -1 -19		1,18 3,23
L4 L5 L6 L7 L8	Waste, non-haz./landfill Waste, hazardous/incinerated Emissions (Air) Greenhouse Gases in GWP100 Acidification, emissions	g g kg CO2 eq. g SO2 eq.	116 5 56 2,325	458 0 8 35	574 5 65 2,360	15 0 2 5	38,434 1,177 3,184 14,110	3 0	-38 -1 -19 -881		1,18 3,23 15,59
14 15 16 17 18 19	Waste, non-haz./landfill Waste, hazardous/incinerated Emissions (Air) Greenhouse Gases in GWP100 Acidification, emissions Volatile Organic Compounds (VOC)	g g kg CO2 eq. g SO2 eq. g	116 5 56 2,325 0	458 0 8 35 0	574 5 65 2,360 0	15 0 2 5 0	38,434 1,177 3,184 14,110 1,666	3 0 0 1 0	-38 -1 -19 -881 0		1,181 3,231 15,595 1,666
L4 L5 L6 L7 L8 L9 20	Waste, non-haz./landfill Waste, hazardous/incinerated Emissions (Air) Greenhouse Gases in GWP100 Acidification, emissions Volatile Organic Compounds (VOC) Persistent Organic Pollutants (POP)	g g kg CO2 eq. g SO2 eq. g ng i-Teq	116 5 56 2,325 0 30	458 0 8 35 0 0	574 5 65 2,360 0 30	15 0 2 5 0 0	38,434 1,177 3,184 14,110 1,666 174	3 0 1 0 0 0	-38 -1 -19 -881 0 -11		1,18 3,23 15,59 1,660 19
14 15 16 17 18 19 20 21	Waste, non-haz./landfill Waste, hazardous/incinerated Emissions (Air) Greenhouse Gases in GWP100 Acidification, emissions Volatile Organic Compounds (VOC) Persistent Organic Pollutants (POP) Heavy Metals	g g kg CO2 eq. g SO2 eq. g ng i-Teq mg Ni eq.	116 5 56 2,325 0 30 437	458 0 8 35 0 0 0 0	574 5 65 2,360 0 30 437	15 0 2 5 0 0 1	38,434 1,177 3,184 14,110 1,666 174 758	3 0 1 0 0 0 0 0	-38 -1 -19 -881 0 -11 -166		1,18 3,23 15,59 1,660 19 1,030
.4 .5 .6 .7 .8 .9 .9 .1 .2	Waste, non-haz./landfill Waste, hazardous/incinerated Emissions (Air) Greenhouse Gases in GWP100 Acidification, emissions Volatile Organic Compounds (VOC) Persistent Organic Pollutants (POP) Heavy Metals PAHs	g g g g SO2 eq. g ng i-Teq mg Ni eq. mg Ni eq.	116 5 56 2,325 0 30 437 43	458 0 8 35 0 0 0 0 0 0	574 5 65 2,360 0 30 437 43	15 0 2 5 0 0 1 1	38,434 1,177 3,184 14,110 1,666 174 758 174	3 0 1 0 0 0 0 0 0	-38 -1 -19 -881 0 -11 -166 -16		1,18 3,23 15,59 1,66 19 1,03 20
L4 L5 L6 L7 L8 L9 20 21 22	Waste, non-haz./landfill Waste, hazardous/incinerated Emissions (Air) Greenhouse Gases in GWP100 Acidification, emissions Volatile Organic Compounds (VOC) Persistent Organic Pollutants (POP) Heavy Metals	g g kg CO2 eq. g SO2 eq. g ng i-Teq mg Ni eq.	116 5 56 2,325 0 30 437	458 0 8 35 0 0 0 0	574 5 65 2,360 0 30 437	15 0 2 5 0 0 1	38,434 1,177 3,184 14,110 1,666 174 758	3 0 1 0 0 0 0 0	-38 -1 -19 -881 0 -11 -166		1,18 3,23 15,59 1,66 19 1,03 20
14 15 16 17 18 19 20 21 22	Waste, non-haz./landfill Waste, hazardous/incinerated Emissions (Air) Greenhouse Gases in GWP100 Acidification, emissions Volatile Organic Compounds (VOC) Persistent Organic Pollutants (POP) Heavy Metals PAHs	g g g g SO2 eq. g ng i-Teq mg Ni eq. mg Ni eq.	116 5 56 2,325 0 30 437 43	458 0 8 35 0 0 0 0 0 0	574 5 65 2,360 0 30 437 43	15 0 2 5 0 0 1 1	38,434 1,177 3,184 14,110 1,666 174 758 174	3 0 1 0 0 0 0 0 0	-38 -1 -19 -881 0 -11 -166 -16		1,18 3,23 15,59 1,660 19 1,030 202
14 15 16 17 18 19 20 21 22 23	Waste, non-haz./landfill Waste, hazardous/incinerated Emissions (Air) Greenhouse Gases in GWP100 Acidification, emissions Volatile Organic Compounds (VOC) Persistent Organic Pollutants (POP) Heavy Metals PAHs Particulate Matter (PM, dust)	g g g g SO2 eq. g ng i-Teq mg Ni eq. mg Ni eq.	116 5 56 2,325 0 30 437 43	458 0 8 35 0 0 0 0 0 0	574 5 65 2,360 0 30 437 43	15 0 2 5 0 0 1 1	38,434 1,177 3,184 14,110 1,666 174 758 174	3 0 1 0 0 0 0 0 0	-38 -1 -19 -881 0 -11 -166 -16		38,983 1,183 3,233 15,599 1,666 199 1,030 207 361

5.3 Base case Life Cycle Cost for consumer

This section includes a calculation of the LCC for consumers using the new LCC equations available in the MEErP methodology including the escalation rate.

LCC have been calculated using the EcoReport tool based upon the economic input parameters shown in Table 5-6. The results of this calculation are shown in Table 5-13 referred to the lifetime considered for each of the base cases. Product price, installation costs and energy (electricity) costs during the whole life cycle have been considered.

	Unit				Bas	es o	cases defini	ton			
Base case id			BC1		BC2		BC3		BC4		BC5
Sector		0,	Services		Services		Industry	S	ervices		Industry
Application circuit			Lighting	Di	stribution	Di	stribution	De	edicated	D	edicated
Product price	€	€	31.16	€	3,959.30	€	33,537.60	€	207.74	€	1,303.20
Installation/ acquisition costs (if any)	€	€	39.54	€	205.80	€	744.18	€	85.83	€	288.78
Electricity	€	€	39.62	€	7,843.77	€	45,516.79	€	2,175.47	€	12,874.45
Total	€	€	110.32	€	12,008.87	€	79,798.57	€	2,469.04	€	14,466.43
Product price	%		28%		33%		42%		8%		9%
Installation/ acquisition costs (if any)	%		36%		2%		1%		3%		2%
Electricity	%		36%	1	65%		57%		88%		89%
Total	%		100%		100%		100%		100%		100%

Table 5-13: Life Cycle Costs for consumer per base case

5.4 Base case Life Cycle Costs for society

This section includes a calculation of the LCC for society as described in the MEErP methodology , following the extended LCC equations with CO_2 stock price, societal damage of certain emissions, etc.

LCC for society have been calculated using the EcoReport tool. The results of this calculation are shown in Table 5-14 referred to the lifetime considered for each of the base cases.

	Unit		Bas	ses cases defini	ton	
Base case id		BC1	BC2	BC3	BC4	BC5
Sector		Services	Services	Industry	Services	Industry
Application circuit		Lighting	Distribution	Distribution	Dedicated	Dedicated
Product price	€	€ 31.16	€ 3,959.30	€ 33,537.60	€ 207.74	€ 1,303.20
Installation/ acquisition costs (if any)	€	€ 39.54	€ 205.80	€ 744.18	€ 85.83	€ 288.78
Electricity	€	€ 39.62	€ 7,843.77	€ 45,516.79	€ 2,175.47	€ 12,874.45
External damages total, of which	€	€ 14.80	€ 2,853.02	€ 20,314.59	€ 466.55	€ 2,839.66
- production PPext	€	€ 14.80	€ 2,853.02	€ 20,314.59	€ 466.55	€ 2,839.66
 lifetime operating expense N*OEext 	€	€ 7.46	€ 1,478.00	€ 8,602.24	€ 407.66	€ 2,413.13
- end-of-life OELext	€	€ 1.54	€ 363.61	€ 3,079.09	€ 15.17	€ 112.33
Total	€	€ 125.12	€ 14,861.89	€ 100,113.15	€ 2,935.60	€ 17,306.09
Product price	%	25%	27%	33%	7%	8%
Installation/ acquisition costs (if any)	%	32%	1%	1%	3%	2%
Electricity	%	32%	53%	45%	74%	74%
External damages total, of which	%	12%	19%	20%	16%	16%
Total	%	100%	100%	100%	100%	100%

Table 5-14: Life Cycle Costs for society per base case

5.5 EU totals

Following the MEErP 2011 methodology, EU Totals have been calculated using the EcoReport tool in which environmental impacts and LCC outcomes have been aggregated according to stock and market data estimated in Task 2.

5.5.1 Stock specific inputs

Table 5-15 shows the stock input parameters per BC. The five base cases are assumed to represent the installed stock in the EU-28.

	Unit		Bas	es cases defini	ton	
Base case id		BC1	BC2	BC3	BC4	BC5
		Services	Services	Industry	Services	Industry
Sector		sector	sector	sector	sector	sector
		Lighting	Distribution	Distribution	Dedicated	Dedicated
Application circuit		circuit	circuit	circuit	circuit	circuit
Stock and sales data (fixed total stock)						
Year		2010	2010	2010	2010	2010
EU Stock per base case cable (Cu weight)	kg	7.05E+08	2.17E+09	1.55E+09	3.76E+08	2.27E+09
EU Stock (units of 1 cable)	m	1.76E+10	4.07E+08	1.46E+08	8.45E+08	1.46E+09
EU Stock (base case units)	mln. Units	464.07	5.98	0.51	24.85	20.27
Annual sales (base case units)	mln. Units	32.86	0.42	0.04	1.76	1.44

5.5.2 Environmental impact at EU-28

The total annual impacts from the EU stock of products are presented in Table 5-16.

	Unit		В	ases cases definite	on		
Base case id		BC1	BC2	BC3	BC4	BC5	Total
Sector		Services sector	Services sector	Industry sector	Services sector	Industry sector	
Application circuit		Lighting circuit	Distribution circui	Distribution circui	Dedicated circuit	Dedicated circuit	
Materials							
Plastics	Mt	0.151	0.059	0.033	0.019	0.073	0.34
Ferrous metals	Mt	0.000	0.000	0.000	0.000	0.000	0.00
Non-ferrous metals	Mt	0.050	0.155	0.111	0.027	0.162	0.51
Other resources & waste							
Total Energy (GER)	PJ	132.94	294.36	149.10	317.99	1536.52	2,430.91
of which, electricity	TWh	12.89	30.36	14.92	34.86	168.18	261.19
Water (process)*	mln.m3	9.46	3.63	2.01	1.15	4.41	20.66
Waste, non-haz./ landfill*	Mt	0.08	0.15	0.07	0.16	0.79	1.26
Waste, hazardous/ incinerated*	kton	0.00	0.00	0.00	0.00	0.02	0.04
Emissions (Air)							
Greenhouse Gases in GWP100	mt CO2eq.	6.05	12.83	6.54	13.64	65.88	104.95
Acidifying agents (AP)	kt SO2eq.	38.61	97.39	58.12	67.29	333.95	595.36
Volatile Org. Compounds (VOC)	kt	2.52	6.08	2.99	7.00	33.77	52.35
Persistent Org. Pollutants (POP)	g i-Teq.	0.47	1.22	0.73	0.83	4.14	7.39
Heavy Metals (HM)	ton Ni eq.	4.10	11.30	7.48	4.66	24.24	51.77
PAHs	ton Ni eq.	0.65	1.48	0.92	0.88	4.42	8.35
Particulate Matter (PM, dust)	kt	2.07	2.43	1.73	1.53	7.48	15.25
Emissions (Water)							
Heavy Metals (HM)	ton Hg/20	5.24	15.76	11.03	3.88	21.79	57.70
Eutrophication (EP)	kt PO4	0.03	0.08	0.04	0.06	0.31	0.53

Table 5-16: EU-28 total annual environmental impacts from the installed stock

Note: a total of 261.19 TWh for electricity is too high: see 5.6.

5.5.3 Economic assessment at EU-28

Table 5-17 shows the total annual expenditure in EU due to the stock of products currently installed in the EU-28.

	Unit		Total				
Base case id		BC1	BC2	BC3	BC4	BC5	
Sector		Services	Services	Industry	Services	Industry	
Application circuit		Lighting	Distribution	Distribution	Dedicated	Dedicated	
Product price	mln. €	1023.79	1676.22	1201.30	365.55	1870.31	6137.18
Installation/ acquisition costs (if any)	mln. €	1299.11	87.13	26.66	151.04	414.45	1978.38
Electricity	mln.€	1370.37	3320.76	1630.39	3828.08	18476.95	28626.56
Total	mln.€	3693.28	5084.11	2858.35	4344.67	20761.71	36742.12
Product price	%	17%	27%	20%	6%	30%	100%
Installation/ acquisition costs (if any)	%	66%	4%	1%	8%	21%	100%
Electricity	%	5%	12%	6%	13%	65%	100%
Total	%	10%	14%	8%	12%	57%	100%

Table 5-17: Total annual expenditure in the EU-28 per base case

5.6 Cross checks on EU-28 impact

To verify the outcomes of the calculation some cross checks were added.

There are two possible methods with different starting assumptions for the calculation:

- 1. Fixed total stock/annual sales (figures in Task 2) -> EU-28 annual transported active energy is calculated
- 2. Fixed EU-28 energy consumption -> total stock/annual sales is calculated

In case of the first method the amount of energy transported per BC multiplied by the number of BC units must be lower than the amount of electricity consumed in the EU-28 services and industry sector.

In case of the second method the calculated annual replacement sales multiplied by the product life (= stock) should be about the same as the stock/annual sales figures mentioned in Task 2.

Table 5-19 shows the results when using the second method (fixed energy consumption).

	Unit						
Base case id		BC1	BC2	BC3	BC4	BC5	Total over all BC
Sector		Services	Services	Industry	Services	Industry	
Application circuit		Lighting	Distribution	Distribution	Dedicated	Dedicated	
Method 1: fixed stock	kg						7.08E+09
Energy distribution factor	%	10%	100%	100%	85%	85%	
EU Stock (base case units)	mln. Units	464.07	5.98	0.51	24.85	20.27	
Number of buildings per sector (Task 2 Table 2-9)	mln Units	11.41	11.41	2.58	11.41	2.58	
Annual energy loss (formula 3.5) per BC	kVAh	26.85	5048.54	29296.26	1400.21	8286.46	
Annual energy transported (formula 3.6) per BC	kWh	6,233	1,383,543	5,121,230	148,731	465,153	
Checks							
Annual energy loss Eu-28 (=BC loss * #BC units)	TWh	12.46	30.19	14.82	34.80	167.97	260.24
Annual energy transported Eu-28 (=BC annual							
energy transport * #BC units)	TWh	2,893	8,273	2,591	3,697	9,429	
Annual energy transported Eu-28 corrected with							
energy distribution factor	TWh	28,927	8,273	2,591	4,349	11,093	
Number of BC units (circuits) per building		40.7	0.5	0.2	2.2	7.9	

Table 5-18: EU-28 totals check: first method

	Unit						
Base case id		BC1	BC2	BC3	BC4	BC5	Total over all BC
Sector		Services	Services	Industry	Services	Industry	
Application circuit		Lighting	Distribution	Distribution	Dedicated	Dedicated	
Method 2: fixed EU-28 energy consumption	TWh		904	1030			1934
Energy distribution factor	%	10%	100%	100%	85%	85%	
Number of buildings per sector (Task 2 Table 2-9)	mIn Units	11.41	11.41	2.58	11.41	2.58	
Annual energy transported (formula 3.6) per BC	kWh	6,233	1,383,543	5,121,230	148,731	465,153	
EU28 energy consumption (distributed via energy distribution factor)	TWh	90.41	904.12	1029.62	768.50	875.17	
Checks			•	•			
BC stock (= EU-28 energy consumption / energy							
transported per BC)	mIn Units	14.50	0.65	0.20	5.17	1.88	22.41
BC stock (weight)	kg	2.20E+07	2.37E+08	6.18E+08	7.81E+07	2.11E+08	1.17E+09
Number of BC units (circuits) per building		1.3	0.1	0.1	0.5	0.7	

Table 5-19: EU-28 totals check: second method

The EU-28 totals mentioned in the previous sections are based upon a fixed Cu stock for the reference year as provided in the Working Plan. Table 5-18 shows the results when comparing the amount of energy transported with the total electricity consumption in Europe.

One notices the outcome is too high, potential reasons:

- the assumed stock/annual sales is too high;
- the load and load form factor are too high;
- the length of the circuits is too low;
- base case selection is not representative;
- a combination of the above mentioned reasons.

As an experiment Table 5-20 respectively Table 5-21 shows the results for the first respectively the second method, when the length of the circuits is multiplied by 3 and the load factor is divided by 3.

	Unit	it Bases cases definiton					
Base case id		BC1	BC2	BC3		BC5	Total over all BC
Sector		Services	Services	Industry	Services	Industry	
Application circuit		Lighting	Distribution	Distribution	Dedicated	Dedicated	
Method 1: fixed stock	kg						7.08E+09
Energy distribution factor	%	10%	100%	100%	85%	85%	
EU Stock (base case units)	mln. Units	154.69	1.99	0.17	8.28	6.76	
Number of buildings per sector (Task 2 Table 2-9)	mln Units	11.41	11.41	2.58	11.41	2.58	
Annual energy loss (formula 3.5) per BC	kVAh	8.77	1649.36	9571.09	457.45	2707.19	
Annual energy transported (formula 3.6) per BC	kWh	2,057	456,569	1,690,006	49,081	153,501	
Checks							
Annual energy loss Eu-28 (=BC loss * #BC units)	TWh	1.36	3.29	1.61	3.79	18.29	28.34
Annual energy transported Eu-28 (=BC annual							
energy transport * #BC units)	TWh	318	910	285	407	1,037	
Annual energy transported Eu-28 corrected with							
energy distribution factor	TWh	3,182	910	285	478	1,220	
Number of BC units (circuits) per building		13.6	0.2	0.1	0.7	2.6	

Table 5-20: EU-28 totals check: first method, corrected

	Unit		Bases cases definiton					
Base case id		BC1	BC2	BC3	BC4	BC5	Total over all BC	
Sector		Services	Services	Industry	Services	Industry		
Application circuit		Lighting	Distribution	Distribution	Dedicated	Dedicated		
Method 2: fixed EU-28 energy consumption	TWh		904	1030			1934	
Energy distribution factor	%	10%	100%	100%	85%	85%		
Number of buildings per sector (Task 2 Table 2-9)	mIn Units	11.41	11.41	2.58	11.41	2.58		
Annual energy transported (formula 3.6) per BC	kWh	2,057	456,569	1,690,006	49,081	153,501		
EU28 energy consumption (distributed via energy								
distribution factor)	TWh	90.41	904.12	1029.62	768.50	875.17		
Checks								
BC stock (= EU-28 energy consumption / energy								
transported per BC)	mIn Units	43.95	1.98	0.61	15.66	5.70	67.90	
BC stock (weight)	kg	2.00E+08	2.15E+09	5.62E+09	7.10E+08	1.92E+09	1.06E+10	
Number of BC units (circuits) per building		3.9	0.2	0.2	1.4	2.2		

Table 5-21: EU-28 totals check: second method, corrected