

Contract N°. Specific contract 185/PP/ENT/IMA/12/1110333-Lot8 implementing FC ENTR/29/PP/FC Lot 2

Report

# Preparatory Studies for Product Group in the Ecodesign Working Plan 2012-2014: Lot 8- Power Cables

# Task 3 report – Users (product demand side) (3rd version)



Contact VITO: Paul Van Tichelen, www.erp4cables.net

Study for European Commission DG ENTR unit B1, contact: Cesar Santos Gil



VITO NV Boeretang 200 – 2400 MOL – BELGIUM Tel. + 32 14 33 55 11 – Fax + 32 14 33 55 99 vito@vito.be – www.vito.be

VAT BE-0244.195.916 RPR (Turnhout) Bank 435-4508191-02 KBC (Brussel) BE32 4354 5081 9102 (IBAN) KREDBEBB (BIC)

#### **Project team**

Vito:

Paul, Van Tichelen Dominic, Ectors Marcel, Stevens Wai Chung, Lam

### **Disclaimer:**

The authors accept no liability for any material or immaterial direct or indirect damage resulting from the use of this report or its content.

The sole responsibility for the content of this report lies with the authors. It does not necessarily reflect the opinion of the European Communities. The European Commission is not responsible for any use that may be made of the information contained therein.

# **DISTRIBUTION LIST**

Public

# 1 **EXECUTIVE SUMMARY**

VITO is performing the preparatory study for the new upcoming ecodesign directive for
 Energy-related Products (ErP) related to power cables, on behalf of the European
 Commission (more info <u>http://ec.europa.eu/enterprise/policies/sustainable-</u>
 <u>business/ecodesign/index en.htm</u>).

6

7 In order to improve the efficient use of resources and reduce the environmental 8 impacts of energy-related products the European Parliament and the Council have 9 adopted Directive 2009/125/EC (recast of Directive 2005/32/EC) establishing a framework for the setting Ecodesign requirements (e.g. energy efficiency) for energy-10 related products in the residential, tertiary, and industrial sectors. It prevents disparate 11 12 national legislations on the environmental performance of these products from 13 becoming obstacles to the intra-EU trade and contributes to sustainable development 14 by increasing energy efficiency and the level of protection of the environment, taking 15 into account the whole life cycle cost. This should benefit both businesses and 16 consumers, by enhancing product quality and environmental protection and by facilitating free movement of goods across the EU. It is also possible to introduce 17 18 binding information requirements for components and sub-assemblies.

19

The MEErP methodology (Methodology for the Ecodesign of Energy-related Products) allows the evaluation of whether and to which extent various energy-using products fulfil the criteria established by the ErP Directive for which implementing measures might be considered. The MEErP model translates product specific information, covering all stages of the life of the product, into environmental impacts (more info http://ec.europa.eu/enterprise/policies/sustainable-

- 26 <u>business/ecodesign/methodology/index\_en.htm</u>).
   27
- 28 The tasks in the MEErP entail:
- 29 Task 1 Scope (definitions, standards and legislation);
- 30 Task 2 Markets (volumes and prices);
- 31 Task 3 Users (product demand side);

32 Task 4 - Technologies (product supply side, includes both Best Available Technology

33 (BAT) and Best Not Yet Available Technology (BNAT));

Task 5 – Environment & Economics (base case Life Cycle Assessment (LCA) & Life Cycle
 Costs (LCC));

- 36 Task 6 Design options (improvement potential);
- 37 Task 7 Scenarios (policy, scenario, impact and sensitivity analysis).

38 Tasks 1 to 4 can be performed in parallel, whereas 5, 6 and 7 are sequential.

Task 0 or a Quick-scan is optional to Task 1 for the case of large or inhomogeneous

- product groups, where it is recommended to carry out a first product screening. The
  objective is to re-group or narrow the product scope, as appropriate from an ecodesign
- 42 point of view, for the subsequent analysis in tasks 2-7.
- 43
- 44
- 45 46
- 47
- 48
- 49
- 50
- 51
- 52 53

# TABLE OF CONTENTS

| Distribut         | ion List                                                                       | I         |
|-------------------|--------------------------------------------------------------------------------|-----------|
| Executive         | e Summary                                                                      | 11        |
| Table of (        | Contents                                                                       | 111       |
| List of Fig       | gures                                                                          | <b>IV</b> |
| List of Ta        | bles                                                                           | v         |
| List of Ac        | ronyms                                                                         | vi        |
| CHAPTER           | 3 Task 3: Users                                                                | 10        |
| 3.1 Sy            | rstems aspects of the use phase for ErPs with direct impact                    | 11        |
| 3.1.1             | Definition of the user and context                                             | 13        |
| 3.1.2             | Loss parameters directly related to the cable itself                           | 13        |
| 3.1.3             | Other functional cable parameters not directly related to losses               | 17        |
| 3.1.4<br>topology | Loss parameters directly related to the electrical circuit and network<br>/ 18 | •         |
| 3.1.5             | Parameters related to the building and loading                                 | 30        |
| 3.1.6             | Formulas used for power losses in cables                                       | 37        |
| 3.2 Sy            | stems aspects of the use phase for ErPs with indirect impact                   | 39        |
| 3.2.1             | Building space heating and cooling system                                      | 39        |
| 3.3 Er            | nd-of-Life behaviour                                                           | 39        |
| 3.4 Lo            | cal infrastructure (barriers and opportunities)                                | 45        |
| 3.4.1             | Opportunities                                                                  | 45        |
| 3.4.2             | Barriers                                                                       | 46        |
| 3.4.3             | Installers and certifiers of electrical installations                          | 52        |
| 3.4.4             | Physical environment                                                           | 52        |
| Annex 3-          | Α                                                                              | 53        |
|                   |                                                                                |           |

# LIST OF FIGURES

| Figure 3-1: Three groups of ErP, distinguished by their impact (source: MEErP 201                  | .1 |
|----------------------------------------------------------------------------------------------------|----|
| Methodology Part 1)1                                                                               | 0  |
| Figure 3-2: From strict product to systems approach 1                                              | 2  |
| Figure 3-3: Simplified 1-wire diagram of an electric installation 1                                | 2  |
| Figure 3-4: Resistance increase due to skin effect at 50Hz for Cu and Al conductors. 1             | .7 |
| Figure 3-5: Voltage drop in an electrical installation 1                                           | 9  |
| Figure 3-6: Example of a 'two wire installation' 2                                                 | 20 |
| Figure 3-7: Typical wiring diagram 2                                                               | 2  |
| Figure 3-8: Kd in function of load branch length factor and number of nodes                        | 25 |
| Figure 3-9: Some examples of method of installation (IEC 60364-5-52) 2                             | 28 |
| Figure 3-10: Different thermal conditions 2                                                        | 29 |
| Figure 3-11: Recycling flow of wires and cables <sup>14</sup>                                      | 9  |
| Figure 3-12: Schematic diagram of mechanical recycling process <sup>14</sup> , see Figure 3-14 for | or |
| <mark>more details.</mark>                                                                         | 0  |
| Figure 3-13: Basic cable stripping machines <sup>14</sup>                                          | 0  |
| Figure 3-14: Detailed process flow of cable waste shredding <sup>14</sup>                          | 2  |
| Figure 3-15: The Vinyloop <sup>®</sup> process                                                     | 3  |
| Figure 3-16: Amounts of recycled PVC (in tonnes) within the Vinyl 2010's and VinylPlu              | s' |
| frameworks                                                                                         | 3  |

#### LIST OF TABLES

| 2        | Table 3-1: Properties of Aluminium and Copper         Table 2-2: Minimum and maximum able many continued maximum. | 14        |
|----------|-------------------------------------------------------------------------------------------------------------------|-----------|
| 3<br>4   | Table 3-2: Minimum and maximum cable cross-sectional areas per circuit type                                       | 13        |
| 5        | Table 3-4: Average circuit length in meters according guestionnaire <sup>5</sup>                                  | 21        |
| 6        | Table 3-5: Kd factors for circuits with minimum 1 to maximum 8 socket-outlets w                                   | ith       |
| 7        | equally distributed loads and cable segment lengths                                                               | 22        |
| 8        | Table 3-6: Kd factors for circuits with up to 30 nodes in function of load branch leng                            | th        |
| 9        | factor                                                                                                            | 24        |
| 10       | Table 3-7: Average number of nodes per circuit application type according                                         | to        |
| 11       | questionnaire                                                                                                     | 26        |
| 12       | Table 3-8: Kd factor per circuit type                                                                             | 27        |
| 13       | Table 3-9: Diversity factor in function of the number of circuits according IEC 61439                             | -3        |
| 14       |                                                                                                                   | 30        |
| 15       | Table 3-10: Load form factor and load factors in the residential sector                                           | 32        |
| 16       | Table 3-11: Load form factor and load factors in the services sector                                              | 33        |
| 17       | Table 3-12: Load form factor and load factors in the industry sector                                              | 34        |
| 18       | Table 3-13: Load factors $(a_c)$ and load form factors (Kf) to be used in this study                              | 35        |
| 19       | Table 3-14: Reduction factors for harmonic currents in four-core and five-core cables                             | 37        |
| 20       | Table 3-15: Comparison between mechanical and manual separation process <sup>14</sup>                             | 40        |
| 21       | Table 3-16: Lifetime parameters per sector                                                                        | 44        |
| 22       | Table 3-17: End of life parameters                                                                                | 45        |
| 23       | Table 3-18: Lifetime of wiring according NAHB                                                                     | 48        |
| 24       | Table 3-19: Lifetime of cables and wires according their application <sup>21</sup>                                | 49<br>- 0 |
| 25       | Table 3-20: Assumed working life of construction products                                                         | 50<br>50  |
| 26       | Table 3-21: Minimum design life of components                                                                     | 50<br>50  |
| 27       | Table 3-22: Design working life of components                                                                     | 5U        |
| 28       | Table 3-23: Lifetime of cables and wires according their application                                              | )T        |
| 29       | Table 3-24: Cable product metime                                                                                  | 2T        |
| 3U<br>21 | Table 3-25: Ku factors: load branch length factor equal to 10%                                                    | 54        |
| 22       | Table 2-20. Ku factors: load branch length factor equal to 100%                                                   | 55        |
| 22<br>22 | Table 3-27. Ku factors: load branch longth factor equal to 200%                                                   | 50        |
| 27       |                                                                                                                   | 57        |
| 32       |                                                                                                                   |           |
| 36       |                                                                                                                   |           |
| 30       |                                                                                                                   |           |
| 38       |                                                                                                                   |           |
| 39       |                                                                                                                   |           |
| 40       |                                                                                                                   |           |

41

43 

# 1 LIST OF ACRONYMS

| ۸          | Amperade                                                               |
|------------|------------------------------------------------------------------------|
| л<br>д     | Corrected or circuit load factor                                       |
|            | Alternating Current                                                    |
|            | Aluminium                                                              |
|            | Algemeen Reglement on de Flektrische Installaties                      |
|            |                                                                        |
| B2B        | Rusiness-to-husiness                                                   |
| BAT        | Best Available Technology                                              |
| BAU        | Business As Usual                                                      |
| BNAT       | Best Not vet Available Technology                                      |
| CE         | Conformite Europee                                                     |
| CEN        | European Committee for Normalisation                                   |
| CENELEC    | European Committee for Electro technical Standardization               |
| CPD        | Construction Products Directive                                        |
| CPR        | Construction Products Regulation                                       |
| CSA        | conductor Cross-Sectional Area                                         |
| Cu         | Copper                                                                 |
| DC         | Direct Current                                                         |
| DIN        | Deutsches Institut für Normung                                         |
| E          | Energy                                                                 |
| EC         | European Commission                                                    |
| EMC        | Electro Magnetic Compatibility                                         |
| EMI        | Electromagnetic Interference                                           |
| EMS        | Energy Management System                                               |
| EN         | European Norm                                                          |
| EUL        | ENG OF LIFE<br>Energy Derformance of Buildings Directive               |
|            | Ethylene Drenylene Dubber                                              |
| EPR<br>ErD | Energy related Products                                                |
| EuP        | Energy using Products                                                  |
| FU         | European Union                                                         |
| HD         | Harmonization Document                                                 |
| HV         | High Voltage                                                           |
| IEC        | The International Electro technical Commission                         |
| IT         | Information Technology                                                 |
| К          | Kilo (10 <sup>3</sup> )                                                |
| Kf         | Load form factor                                                       |
| LCA        | (environmental) Life Cycle Assessment                                  |
| LCC        | Life Cycle Costs                                                       |
| LV         | Low Voltage                                                            |
| LVD        | Low Voltage Directive                                                  |
| MEErP      | Methodology for Ecodesign of Energy-related Products                   |
| MEEuP      | Methodology for Ecodesign of Energy-using Products                     |
| MV         | Medium Voltage                                                         |
| NBN        | Bureau voor Normalisatie (Belgie) - Bureau de Normalisation (Belgique) |
|            |                                                                        |
|            | Power Taclor<br>Delypropylopo                                          |
|            | PRODuction COMmunautaire                                               |
|            |                                                                        |
| R          | Resistance                                                             |
| RCD        | Residual Current Device                                                |
|            |                                                                        |

| REMODECE | Residential Monitoring to Decrease Energy Use and Carbon Emissions in Europe                  |
|----------|-----------------------------------------------------------------------------------------------|
| RES      | Renewable Energy Sources                                                                      |
| RMS      | Root Mean Square                                                                              |
| RoHS     | Restriction of the use of certain Hazardous Substances in electrical and electronic equipment |
| S        | apparent power                                                                                |
| S        | Section                                                                                       |
| SME      | Small and Medium sized Enterprise                                                             |
| TBC      | To Be Completed                                                                               |
| TBD      | To Be Defined                                                                                 |
| TC       | Technical Committee                                                                           |
| TR       | Technical Report                                                                              |
| UK       | United Kingdom                                                                                |
| V        | Voltage                                                                                       |
| VITO     | Flemish institute for Technological Research                                                  |
| XLPE     | Cross-linked Polyethene                                                                       |
| XLPVC    | Cross-linked PVC                                                                              |

# Use of text background colours

4

5

Blue: draft text Yellow: text requires attention to be commented Green: text changed in the last update 6

# CHAPTER 3 TASK 3: USERS

## 1

#### 2

The objective of this task is to identify the system aspects of the use phase. User requirements can be influenced by product design and product information. Relevant user-parameters are an important input for the assessment of the environmental impact of a product during its use and end-of-life phase, in particular if they are different from the standard measurement conditions as described in subtask 1.2.

8 With the recast of the Ecodesign Directive to energy-related products in 2009, the 9 discussion on user requirements needs to take into account the indirect impacts of 10 energy-related products (see illustration below).





Figure 3-1: Three groups of ErP, distinguished by their impact (source: MEErP 2011 Methodology Part 1).

#### 25

# 26 Summary of Task 3:

27 The use of the power cable is mainly defined by the characteristics of the circuit, the 28 load distribution in the building and the power consumption profile of the connected 29 loads. The most important parameters for the circuit characteristics are the average circuit 30 31 length (I) in meters (see Table 3-4) and minimum and maximum cable cross sectional 32 areas (CSA) in mm<sup>2</sup> per circuit type (see Table 3-2). The most important parameters related to the power consumption profile of the loads 33 34 are: load factor (ac), load form factor (Kf) (see Table 3-13) and power factor (see

35 **3.1.5.2**).

There is a big spreading in these parameters and 'the European average electrical circuit' is not directly defined neither existing. This might introduce a large degree of

| 1<br>2                                     | uncertainty in later tasks and therefore ranges of data are included which allow complementary sensitivity analysis in Tasks 6 and 7.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 4<br>5                                     | The product lifetime is summarized in Table 3-24. End-of-life parameters are listed in Table 3-17.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 6                                          | On user behaviour the stakeholder questionnaires <sup>1</sup> also revealed that:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 7<br>9<br>10<br>11<br>12<br>13<br>14<br>15 | <ul> <li>that electro-installers are unaware of the losses in circuits;</li> <li>in practice, calculation of losses is not performed when designing an installation. Mostly only voltage drop and safety restrictions are taken into account;</li> <li>The responsibility regarding the budget for the investment and the budget for operating expenses is in most cases split (and linked to different departments/persons). As a result no economic Life Cycle Cost (LCC) is performed and the installation with the lowest investment costs is selected. Tenders do not include a requirement to perform LCC calculations in the offer.</li> </ul> |
| 16<br>17                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

## 18 **3.1** Systems aspects of the use phase for ErPs with direct impact

19 The main function of the electrical installation is to transport electricity. The installation 20 consumes energy by fulfilling this function, because the transport experiences electrical resistance in different parts of the installation and part of the energy is dissipated as 21 heat energy. In this study the focus is on the power cable used in the electrical 22 23 installation. The power cable is part of the electric circuit (see Figure 3-1 and 3-2). The 24 electric circuit consists of different segments using power cables, junction boxes, 25 terminal connections and protection equipment like circuit breakers limiting the 26 maximum current in the power cable. The electrical installation consists of several 27 circuits, distribution boards/system board, and overall protection devices. The electrical 28 installation is an indispensable part of modern buildings.

<sup>&</sup>lt;sup>1</sup> <u>http://www.erp4cables.net/node/6</u>, this questionnaire was sent to installers on the 30<sup>th</sup> of September, 2013 in the context of this study. A second questionnaire was sent on the 7<sup>th</sup> of July, 2014. The results were combined.



Figure 3-2: From strict product to systems approach





3

Figure 3-3: Simplified 1-wire diagram of an electric installation

7

8 The use of the power cable is mainly defined by the characteristics of the circuit, the

9 load distribution in the building and the profile of the loads (in time).

# **3.1.1** Definition of the user and context

2 For electrical installation it is important to discriminate between different types of users3 who use cables:

- 4 5
- 1. The engineering company or architect of the electrical installation.
- 6 2. The person or organisation performing the actual installation of electrical 7 installation of a new building or renovation of parts of the building, e.g. electrical 8 contractors, interior designers, property developers and installers, hereafter 9 called the *'installers'*. The installer is responsible for putting the electrical 10 installation including the power cables into service.
- The person or organisation responsible or certifying the electrical installation,
   hereafter called the 'certifier'.
- 4. The end-user who lives or works in the building and makes use of the electricalinstallation, hereafter called the *'user'*.
- 5. The owner of the building and thus of the electrical installation, hereafter called the 'owner'. The owner finances the electrical installation and has the endresponsibility for the electrical installation in the building (certification, safety coordinator, etc.). Depending on the sector and function type of the building the owner and user roles may be unified in one organisation/person.

Depending on the sector and country the installer and user can be the same acting as a Do-It-Yourself (DIY) consumer. In some countries the installer can also perform the certification of a (small) installation. The DIY method however is only applied in the residential building sector.

25

# 26 **3.1.2** Loss parameters directly related to the cable itself

As discussed in Task 1, the power losses are proportional to the cable resistance (R).The resistance of a cable in circuit at a temperature t can be calculated by the formula:

- 29 30

 $R = \rho_t . I/A$  (Ohm) (formula 3.1)

31

33

34 35

36

- 32 The losses in a power cable are therefore affected by:
  - the specific electrical resistance ( $\rho_t$ ) of the conductor material;
    - the cross-sectional area (A) of the cable;
    - the total length (I) of cable for a circuit.

In annex B of Task 1, a closer look is taken at these physical parameters and at how
manipulation of these parameters can contribute to smaller power losses in power
cables.

## 40 **3.1.2.1 Conductor material electrical resistance**

41 Both aluminium and copper are used as conductors and are available for use in 42 standard wire sizes and foils. Aluminium is less used in cables with small CSAs.

| - |
|---|
| 1 |
| 4 |
|   |

Table 3-1: Properties of Aluminium and Copper

| Property                                   | Aluminium | Copper |
|--------------------------------------------|-----------|--------|
| Electrical Conductivity (relative)         | 0.61      | 1      |
| Thermal Conductivity (Cal/s.cm.K)          | 0.57      | 0.94   |
| Relative weight for the same conductivity  | 0.54      | 1      |
| Cross section for the same conductivity    | 1.56      | 1      |
| Tensile Strength (kg/cm <sup>2</sup> )     | 844       | 2250   |
| Specific weight (kg/dm <sup>2</sup> )      | 2.7       | 8.9    |
| Electrical Resistivity (mOhm.mm) (20°C)    | 26.5      | 16.7   |
| Thermal coefficient of resistance (1e-6/K) | 3770      | 3900   |

2 3

4

5 3.1.2.2 Cross-sectional area (CSA)

The available CSAs for power cable are defined by standardisation and are expressed in mm<sup>2</sup>. The following values for CSA are used in IEC 60228:2004: 0.75; 1; 1.5; 2.5; 4;
6; 10; 16; 25; 35; 50; 70; 95; 120; 150; 185; 240; 300; 400; 500; 630; 800; 1000 and 1200 mm<sup>2</sup>.

10

11

14

15

18

According IEC 60364-1 the CSA of conductors shall be determined for both normal operating conditions and for fault conditions according to:

- their admissible maximum temperature;
- the admissible voltage drop;
- the electromechanical stresses likely to occur due to earth fault and short-circuit
   currents;
  - other mechanical stresses to which the conductors can be subjected;
- the maximum impedance with respect to the functioning of the protection
   against fault currents;
  - the method of installation.

21 22

23

The selection of the appropriate cable cross sectional area takes into account specific parameters like:

| 26 | • | their maximum admissible intensity;                                  |
|----|---|----------------------------------------------------------------------|
| 27 | • | requested current-rating capacity by the circuit;                    |
| 28 | • | length of the cable in the circuit;                                  |
| 29 | • | maximum allowed voltage drop;                                        |
| 30 | • | installation conditions (ambient temperature and installation type); |
| 31 | • | maximum operating temperature for cables and the full installation;  |
| 32 | • | safety fuses, circuit breakers and short circuit time;               |
| 33 | • | number of cables per circuit.                                        |
| 34 |   |                                                                      |
|    |   |                                                                      |

| Sector      | Circuit application type | CSA<br>(mm²)<br>min | CSA<br>(mm²)<br>max |
|-------------|--------------------------|---------------------|---------------------|
|             | Distribution circuit     | 6                   | 16                  |
| Posidontial | Lighting circuit         | 1                   | 2.5                 |
| Residential | Socket-outlet circuit    | 1.5                 | 6 <sup>2</sup>      |
|             | Dedicated circuit        | 2.5                 | 6                   |
|             | Distribution circuit     | 10                  | 600                 |
| Sarvisas    | Lighting circuit         | 1.5                 | 2.5                 |
| Services    | Socket-outlet circuit    | 1.5                 | 6                   |
|             | Dedicated circuit        | 2.5                 | 95                  |
|             | Distribution circuit     | 25                  | 600                 |
| Inductor    | Lighting circuit         | 1.5                 | 2.5                 |
| Industry    | Socket-outlet circuit    | 1.5                 | 10 <sup>3</sup>     |
|             | Dedicated circuit        | 2.5                 | 600                 |

#### Table 3-2: Minimum and maximum cable cross-sectional areas per circuit type

2

1

### 3 3.1.2.3 Length of cable

The length of cable is primarily determined by the physical topography and design of be building, the building's function type and the placing of the appliances along the building. The length of cable used in the electrical installation is also determined by the topology of the electrical installation. For instance an installation can have one or more distribution levels.

9 10

### 11 **Conclusion:**

- 12 See data on lengths of cables in electrical circuits in section 3.1.4.5.
- 13

### 14 **3.1.2.4** *Number of cores*

A power cable contains one or more conductor cores. When the cable is placed in conduits multiple single-core cables can be used. Some products consist of a combination of singe-core or multicore cable and flexible conduits. The number of cores is determined by:

- The AC grid system (TT,TN,IT), see Task 1
- Single phase or three-phase system
  - Earthing conductor included or not, neuter conductor included or not
- Also the handling of the cable (multi-core cables with large CSAs are more difficult to handle than multiple single-core cables) and the product availability/existence play a role in cable selection.
- 25

19

20

21

The cores in a cable generally have the same CSA, but can also have different CSA. The phase currents in three phase systems tend to cancel out one another, summing to

<sup>&</sup>lt;sup>2</sup> 5G6 mm<sup>2</sup> cable at 3-phase 400Vac and max 3% voltage drop results in maximum circuit length of 132m and Imax of 16A or maximum circuit length of 53m and Imax of 40A.

<sup>&</sup>lt;sup>3</sup> 5G10 cable at 3-phase 400Vac and max 3% voltage drop results in maximum circuit length of 142m and Imax of 25A or maximum circuit length of 56m and Imax of 63A.

zero in the case of a linear balanced load. This makes it possible to reduce the size ofthe neutral conductor or even to leave it out in the ideal situation.

3

#### 4 **3.1.2.5 Skin effect**

5 The skin effect is the tendency of an alternating electric current (AC) to become distributed within a conductor such that the current density is largest near the surface 6 7 of the conductor, and decreases with greater depths in the conductor. It has an effect 8 on the cable resistance and is partly determined by the used conductor material and CSA of the cable. The electric current flows mainly at the 'skin' of the conductor, 9 10 between the outer surface and a level called the skin depth  $\delta$ . The skin effect causes the effective resistance of the conductor to increase at higher frequencies where the 11 12 skin depth is smaller, thus reducing the effective cross-section of the conductor.

 $\delta = \sqrt{2\rho/\omega\mu}$  (formula 3.2)

16 Where

17

18 19

20

13

14 15

> $\omega$  = angular frequency of current =  $2\pi \times$  frequency  $\mu$  = absolute magnetic permeability of the conductor

 $\rho$  = resistivity of the conductor

At 50 Hz in copper, the skin depth  $\delta$  is about 9.2 mm. For aluminium it is about 11.6 mm.

The skin effect is only relevant for cables with a diameter D much larger than the skin depth. Using a material of resistivity  $\rho$  we then find the AC resistance of a wire of length L to be:

 $R \approx L\rho/(\pi(D - \delta))$  (formula 3.3)

27

28 29

At 50 Hz the skin effect is negligible for cables with a CSA of less than 400 mm<sup>2</sup>. For cables with a very large CSA the skin effect is an important factor. For instance for cables with a CSA of 1000 mm<sup>2</sup> the AC resistance compared to the DC resistance will increase with almost 30% for copper and 14 % for aluminium. Figure 3-4 shows the increase in resistance for copper and aluminium conductors at 50Hz for CSAs from 400 mm<sup>2</sup> till 1200 mm<sup>2</sup>.

An S+x strategy for cables with a CSA of more than 400 mm<sup>2</sup> will therefore be countered by the increasing resistance due to the skin effect. Looking at material use versus savings the strategy will become less efficient for cables with a very large CSA.

41

36



3 Figure 3-4: Resistance increase due to skin effect at 50Hz for Cu and Al conductors

#### **Conclusion:** 4

5 The skin effect is only relevant for power cables with very large CSA. From 400 mm<sup>2</sup> on 6 the effect is noticeable, and becomes relevant for CSAs more than 630 mm<sup>2</sup>. When 7 selecting the appropriate measure for energy savings in power cables with a very large 8 CSA, the skin effect should be taken into consideration. From a certain CSA magnitude 9 on a dual-wiring strategy (with a smaller CSA than the S+x strategy) may be preferred 10 upon an S+x strategy.

11

#### 12 3.1.3 Other functional cable parameters not directly related to losses

#### 3.1.3.1 Insulation material 13

14 The selection criteria of insulation material depend on electrical (rated voltage) and physical (temperature range, flexibility, flammability, chemical resistance, etc.) 15 16 requirements of the application.

17

The selection of insulation material is also influenced by building properties and 18 function of the building (risk of fire, evacuation capability, etc.). For instance, in 19 20 Belgium the national code AREI imposes requirements on power cables regarding flame resistance. For buildings higher than 25 meter, schools, hospitals and so on the 21 22 evacuation velocity is one of the factors determining the flame resistance category 23 (elapsed time).

24

#### 25 3.1.3.2 Construction of the conductor

26 The type of construction mainly has an effect on the flexibility/bending radius. The 27 selection of the type of construction is thus largely determined by the flexibility and 28 bending requirements.

The construction type has also a small effect on the AC resistance of the cable. Table 3 -3 shows the influence of the construction type on the maximum resistance at 20° C, based upon the resistance values for different CSAs and classes, listed in IEC 60228:2004.  $\Delta R$  stands for the  $R_{classx} - R_{class1}$ .  $\Delta R/R_{class1}$  indicates the amount of resistance reduction or increase for class x compared to class1.

7 Table 3-3: Construction type versus maximum resistance (at 20° C)

|         | Class 1 solid<br>conductors for<br>single-core<br>and multicore<br>cables | Class 2<br>conductors<br>core and<br>cables | stranded<br>for single-<br>multi-core | Class 5 flex<br>conductors<br>core and<br>cables | kible copper<br>for single-<br>multi-core | Class 6 flex<br>conductors<br>core and<br>cables | kible copper<br>for single-<br>multi-core |
|---------|---------------------------------------------------------------------------|---------------------------------------------|---------------------------------------|--------------------------------------------------|-------------------------------------------|--------------------------------------------------|-------------------------------------------|
| CSA     | Plain                                                                     | Plain wires                                 | $\Delta R/Rclass1$                    | Plain wires                                      | $\Delta R/Rclass1$                        | Plain wires                                      | $\Delta R/Rclass1$                        |
| mm²     | Ω/km                                                                      | Ω/km                                        | %                                     | Ω/km                                             | %                                         | Ω/km                                             | %                                         |
| 0.5     | 36                                                                        | 36                                          | 0.0%                                  | 39                                               | 8%                                        | 39                                               | 8%                                        |
| 0.75    | 24.5                                                                      | 24.5                                        | 0.0%                                  | 26                                               | 6%                                        | 26                                               | 6%                                        |
| 1       | 18.1                                                                      | 18.1                                        | 0.0%                                  | 19.5                                             | 8%                                        | 19.5                                             | 8%                                        |
| 1.5     | 12.1                                                                      | 12.1                                        | 0.0%                                  | 13.3                                             | 10%                                       | 13.3                                             | 10%                                       |
| 2.5     | 7.41                                                                      | 7.41                                        | 0.0%                                  | 7.98                                             | 8%                                        | 7.98                                             | 8%                                        |
| 4       | 4.61                                                                      | 4.61                                        | 0.0%                                  | 4.95                                             | 7%                                        | 4.95                                             | 7%                                        |
| 6       | 3.08                                                                      | 3.08                                        | 0.0%                                  | 3.3                                              | 7%                                        | 3.3                                              | 7%                                        |
| 10      | 1.83                                                                      | 1.83                                        | 0.0%                                  | 1.91                                             | 4%                                        | 1.91                                             | 4%                                        |
| 16      | 1.15                                                                      | 1.15                                        | 0.0%                                  | 1.21                                             | 5%                                        | 1.21                                             | 5%                                        |
| 25      | 0.727                                                                     | 0.727                                       | 0.0%                                  | 0.78                                             | 7%                                        | 0.78                                             | 7%                                        |
| 35      | 0.524                                                                     | 0.524                                       | 0.0%                                  | 0.554                                            | 6%                                        | 0.554                                            | 6%                                        |
| 50      | 0. 387                                                                    | 0.387                                       | 0.0%                                  | 0.386                                            | 0%                                        | 0.386                                            | 0%                                        |
| 70      | 0.268                                                                     | 0.268                                       | 0.0%                                  | 0.272                                            | 1%                                        | 0.272                                            | 1%                                        |
| 95      | 0.193                                                                     | 0.193                                       | 0.0%                                  | 0.206                                            | 7%                                        | 0.206                                            | 7%                                        |
| 120     | 0.153                                                                     | 0.153                                       | 0.0%                                  | 0.161                                            | 5%                                        | 0.161                                            | 5%                                        |
| 150     | 0.124                                                                     | 0.124                                       | 0.0%                                  | 0.129                                            | 4%                                        | 0.129                                            | 4%                                        |
| 185     | 0.101                                                                     | 0.0991                                      | -1.9%                                 | 0.106                                            | 5%                                        | 0.106                                            | 5%                                        |
| 240     | 0.0775                                                                    | 0.0754                                      | -2.7%                                 | 0.0801                                           | 3%                                        | 0.0801                                           | 3%                                        |
| 300     | 0.062                                                                     | 0.0601                                      | -3.1%                                 | 0.0641                                           | 3%                                        | 0.0641                                           | 3%                                        |
| Average |                                                                           |                                             | -0.4%                                 |                                                  | 5.6%                                      |                                                  | 5.6%                                      |

8

9

# 103.1.4 Loss parameters directly related to the electrical circuit and network11topology

12 Losses are also related to the electrical circuit and network topology.

13 An electrical circuit starts at a distribution board and consists of a protective device,

14 cable, junction boxes and distribution endpoints all being part of the electrical circuit.

Also the network topology has an impact, which are the relative positions and the interconnections of the circuit elements representing an electric circuit.

17 In the following sections parameters are defined and reference data is included to 18 model relevant parameters related to cable losses.

#### 1 3.1.4.1 Single phase or three phase circuit

Being a single or three phase circuit has mainly an effect on the number of cores of the 2 3 cable (or number of single core cables) used in the circuit. A single phase circuit cable will have two cores (phase and neuter) or three cores (phase, neuter, earthing). A 4 5 three phase circuit cable canl have three cores (three phases), four cores (phases and 6 earthing, phases and neuter) or five cores (phases, neuter, earthing).

7

14

8 The voltage used in the single phase system is 230V.

9 The voltage used in the three phase system can be 230VAC or 400VAC, depending the configuration. To transport the same energy in a three phase 400V system as in a 10 11 single phase 230 V system the current can be reduced and hence losses are lower. High 12 power loads in the service sector and industry, i.e. above 4600 VA (230VAC/20A), are therefore most often connected 400 VAC three phase. 13

#### 15 **Conclusion:**

16 In this study we will assume that all loads above 4600 VA are connected three-phase, a 17 sensitivity analysis in Task 7 could check for a single phase 230 VAC.

18 Lighting circuits and socket outlet circuits will be considered single phase.

19 Three phase socket outlet or connector circuits do exist and will be reconsidered in a

20 sensitivity analysis in Task 7.

#### 21 3.1.4.2 Maximum voltage drop in a circuit

22

23 The maximum voltage drop in a circuit (see Figure 3-5) is determined in standard (IEC 60364-5-52 - informative Annex G), see Task 1. The voltage drop is directly 24 25

- proportional to the power loss.
- 26
- 27



30 Figure 3-5: Voltage drop in an electrical installation

#### 1 **3.1.4.3** Overcurrent protection in a circuit

Cable losses are limited because the maximum current or overcurrent is limited in an
electrical circuit by using circuit breakers or fuses, as discussed in Task 1.

The overcurrent device rating (In) is selected so that In is greater than or equal to the load current (Ib). Ib is the design current of the circuit, i.e. the current intended to be carried by the circuit in normal service (see task 1).

- 7
- 8
- 9 Circuit breakers are installed according to standard IEC 60364-1.
- 10

### 11 **3.1.4.4 Circuit network topology**

12

13 Electrical circuits can be installed in various network topologies.

14 15

In lighting circuits three different topologies are common:

- A 'Bus network topology' approach, e.g. this is most often implemented with a so-called DALI<sup>4</sup> bus where a control signal is distributed together the power cable. This is frequently used in large industrial installations. Typically a five wire cable is used (5G1.5) whereby two wires are used for the control signal.
- 'Two-wire installation' that contains only one wire between switch and lamp. In 20 21 this system the switch/control product is connected in series with lamp/load and the neutral is not present in the switch (except in some countries). The 22 23 advantage is the low amount of required copper wire and reduced short circuit risk during installation but the disadvantage is that no direct power supply is 24 25 available for electronic control switches (e.g. dimmers). In Figure 3-6 an example of a 'two wire installation' of a two wire installation is shown. The 26 27 neutral wire is directly going to the lamp, without intermediate switch.



28

29

Figure 3-6: Example of a 'two wire installation'

'Three wire installation' that contains both the neutral and phase wire between
 the switch and the lamp. The main advantage is that a power supply for the
 control switch can easily be obtained but it requires more copper wire for
 installation.

• A single wire topology with a relays either at the lamp or at a central distribution board.

<sup>36</sup> 

<sup>&</sup>lt;sup>4</sup> <u>http://www.dali-ag.org</u>

1 In most European countries socket-outlets are interconnected with a single line, in the 2 UK a ring circuit topology is used.

3

#### 4 **Conclusion:** 5 The following

The following topologies will be assumed as typical:

- For lighting in the industry and service sector: a DALI bus cable network topology;
- For socket-outlet: a single line topology;
- For dedicated loads: a point to point connection.
- 9 10

6

7

8

11

## 12 3.1.4.5 Circuit length

Length of circuit stands for the total amount of cable used for the circuit between
distribution board (start point of the circuit) and final endpoint of a circuit.

16 The average length in meters of a circuit, based upon the responses on the 17 questionnaire for installers<sup>5</sup>, per circuit type and sector is shown in Table 3-4.

- 18
- 19

Table 3-4: Average circuit length in meters according questionnaire<sup>5</sup>

| Sector      | Circuit application type | Average<br>length<br>min (m) | Average<br>length<br>ref (m) | Average<br>length<br>max (m) |
|-------------|--------------------------|------------------------------|------------------------------|------------------------------|
|             | Distribution circuit     | 15                           | 21                           | 54                           |
| Posidontial | Lighting circuit         | 10                           | 20                           | 60                           |
| Residential | Socket-outlet circuit    | 5                            | 24                           | 100                          |
|             | Dedicated circuit        | 5                            | 18                           | 80                           |
|             | Distribution circuit     | 20                           | 56                           | 200                          |
| Sorviços    | Lighting circuit         | 12                           | 44                           | 240                          |
| Services    | Socket-outlet circuit    | 10                           | 53                           | 300                          |
|             | Dedicated circuit        | 10                           | 51                           | 300                          |
|             | Distribution circuit     | 30                           | 83                           | 240                          |
| Inductor    | Lighting circuit         | 20                           | 68                           | 340                          |
| maustry     | Socket-outlet circuit    | 15                           | 72                           | 500                          |
|             | Dedicated circuit        | 15                           | 79                           | 400                          |
| Co          | orrectionFactor          | 1                            | 1                            | 2                            |

20 21

21 22

23

### 24 **Conclusion:**

25 Table 3-4 shows the average circuit lengths. The proposal is to use the average 26 reference length values listed in Table 3-4 for the calculation of losses in circuits.

27 Crosschecks in later tasks indicated that the maximum average value should be larger.

<sup>&</sup>lt;sup>5</sup> <u>http://www.erp4cables.net/node/6</u>, this questionnaire was sent to installers on the 30<sup>th</sup> of September, 2013 in the context of this study. A second questionnaire was sent on the 7<sup>th</sup> of July, 2014. The results were combined.

This correction (results are multiplied with the corresponding correction factor shown in the last row of the table) is already incorporated in the results listed in Table 3-4. The maximum and minimum values are used for sensitivity analysis.

3 4

1

2

5

#### 6 3.1.4.6 Effect of load distribution

7 In the case of socket-outlets electrical wires are 'branched' to distributed loads and
8 hence losses are not equal within all cable segments. Figure 3-7 shows a typical wiring
9 diagram with branches, the cable loading at the end points or sockets is of course lower
10 compared to the central feeder connection.

11



12

13

Figure 3-7: Typical wiring diagram

As explained in Task 1, the Kd 'distribution factor' is introduced to compensate the distribution of the loading over the cable of a circuit. A 'distribution factor' of 1 means that all cable segments are loaded with the same load current. The Kd 'distribution factor' is lower than or equal to 1.

- 18
- 19

| 20 | Table 3-5: Kd factors for circuits with minimum 1 to maximum 8 socket-outlets with |
|----|------------------------------------------------------------------------------------|
| 21 | equally distributed loads and cable segment lengths                                |

|    | Number of socket-outlet |                 |      |      |      |      |      |      |  |  |  |  |  |  |  |
|----|-------------------------|-----------------|------|------|------|------|------|------|--|--|--|--|--|--|--|
|    | 1                       | 1 2 3 4 5 6 7 8 |      |      |      |      |      |      |  |  |  |  |  |  |  |
| Kd | 1                       | 0.61            | 0.50 | 0.45 | 0.42 | 0.40 | 0.39 | 0.38 |  |  |  |  |  |  |  |

22 23

Table 3-5 shows the calculated Kd factor for circuits with up to 8 socket outlets, equally distributed loads and cable segment lengths. The calculation results for 8 nodes can be found in Annex 3-A in Table 3-25, Table 3-26, Table 3-27 and Table 3-28.

Table 3-6 and Figure 3-8 show the Kd factor for up to 30 nodes in function of the load

branch length factor of respectively 1%, 10%, 50%, 100%, 150% and 200%. One can

1 conclude that the effect of the number of nodes on the Kd factor beyond 10 nodes is

2 minimal.

# Table 3-6: Kd factors for circuits with up to 30 nodes in function of load branch length factor

| Load branch length factor |   | Number of nodes |       |       |       |       |       |       |       |       |       |       |       |       |       |
|---------------------------|---|-----------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
|                           | 1 | 2               | 3     | 4     | 5     | 6     | 7     | 8     | 9     | 10    | 11    | 12    | 13    | 14    | 15    |
| 1%                        | 1 | 0.624           | 0.517 | 0.467 | 0.438 | 0.420 | 0.406 | 0.397 | 0.389 | 0.383 | 0.378 | 0.374 | 0.371 | 0.368 | 0.366 |
| 10%                       | 1 | 0.613           | 0.502 | 0.451 | 0.422 | 0.403 | 0.390 | 0.381 | 0.373 | 0.367 | 0.362 | 0.358 | 0.355 | 0.352 | 0.350 |
| 50%                       | 1 | 0.563           | 0.437 | 0.382 | 0.351 | 0.332 | 0.319 | 0.309 | 0.302 | 0.296 | 0.292 | 0.288 | 0.285 | 0.282 | 0.280 |
| 100%                      | 1 | 0.500           | 0.356 | 0.295 | 0.262 | 0.242 | 0.229 | 0.220 | 0.213 | 0.207 | 0.203 | 0.200 | 0.197 | 0.194 | 0.192 |
| 150%                      | 1 | 0.438           | 0.274 | 0.208 | 0.173 | 0.153 | 0.140 | 0.130 | 0.124 | 0.119 | 0.115 | 0.111 | 0.109 | 0.106 | 0.105 |
| 200%                      | 1 | 0.375           | 0.193 | 0.121 | 0.084 | 0.064 | 0.050 | 0.041 | 0.035 | 0.030 | 0.026 | 0.023 | 0.021 | 0.019 | 0.017 |

| Load branch length factor |       | Number of nodes |       |       |       |       |       |       |       |       |       |       |       |       |       |
|---------------------------|-------|-----------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
|                           | 16    | 17              | 18    | 19    | 20    | 21    | 22    | 23    | 24    | 25    | 26    | 27    | 28    | 29    | 30    |
| 1%                        | 0.363 | 0.362           | 0.360 | 0.358 | 0.357 | 0.356 | 0.355 | 0.354 | 0.353 | 0.352 | 0.351 | 0.350 | 0.350 | 0.349 | 0.348 |
| 10%                       | 0.348 | 0.346           | 0.344 | 0.343 | 0.341 | 0.340 | 0.339 | 0.338 | 0.337 | 0.336 | 0.336 | 0.335 | 0.334 | 0.334 | 0.333 |
| 50%                       | 0.278 | 0.276           | 0.275 | 0.273 | 0.272 | 0.271 | 0.270 | 0.269 | 0.268 | 0.267 | 0.267 | 0.266 | 0.265 | 0.265 | 0.264 |
| 100%                      | 0.190 | 0.189           | 0.187 | 0.186 | 0.185 | 0.184 | 0.183 | 0.183 | 0.182 | 0.181 | 0.181 | 0.180 | 0.180 | 0.179 | 0.179 |
| 150%                      | 0.103 | 0.102           | 0.100 | 0.099 | 0.098 | 0.098 | 0.097 | 0.096 | 0.096 | 0.095 | 0.094 | 0.094 | 0.094 | 0.093 | 0.093 |
| 200%                      | 0.016 | 0.014           | 0.013 | 0.012 | 0.012 | 0.011 | 0.010 | 0.010 | 0.009 | 0.009 | 0.008 | 0.008 | 0.008 | 0.007 | 0.007 |



Figure 3-8: Kd in function of load branch length factor and number of nodes

3

# *Table 3-7: Average number of nodes per circuit application type according to questionnaire*<sup>6</sup>

| Sector      | Circuit application type | Average<br>number<br>min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Average<br>number<br>ref                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Average<br>number<br>max |
|-------------|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
|             | Distribution circuit     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Average<br>number         Average<br>number           ref         number           10         11           10         30           10         30           10         30           10         30           110         30           12         33           12         25           8         15           2         6           11         11           12         25           8         15           11         11           12         25           13         15           14         28           15         10           12         11 | 1                        |
| Decidential | Lighting circuit         | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 30                       |
| Residential | Socket-outlet circuit    | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20                       |
|             | Dedicated circuit        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3                        |
|             | Distribution circuit     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                        |
| Samiaaa     | Lighting circuit         | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 25                       |
| Services    | Socket-outlet circuit    | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | umber<br>minnumber<br>refnumber<br>max1115103081020123111312254815126111314282610125                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |
|             | Dedicated circuit        | type         number<br>min         number<br>ref         number<br>ref           1         1         1           5         10         1           5         10         1           5         10         1           5         10         1           1         2         1           1         1         1           3         12         1           4         8         1           1         2         1           1         1         1           3         14         1           1         2         6         1           1         2         6         1 | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                          |
|             | Distribution circuit     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                        |
| Teductor    | Lighting circuit         | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 28                       |
| Industry    | Socket-outlet circuit    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10                       |
|             | Dedicated circuit        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5                        |

4 5 6

0 7

8 Typical circuits have almost no branches. The cables are wired through at the nodes. 9 Therefor a load branch length factor of 1% is used to calculate the Kd factor based 10 upon the number of nodes in Table 3-7. The values in Table 3-8 are extracted from 11 Table 3-6 based upon the number of nodes in Table 3-7.

<sup>&</sup>lt;sup>6</sup> <u>http://www.erp4cables.net/node/6</u>, this questionnaire was sent to installers on the 30<sup>th</sup> of September, 2013 in the context of this study. A second questionnaire was sent on the 7<sup>th</sup> of July, 2014. The results were combined.

| Sector      | Circuit application type | Kd if<br>low<br>number<br>of<br>nodes | Kd avg | Kd if<br>high<br>number<br>of<br>nodes |
|-------------|--------------------------|---------------------------------------|--------|----------------------------------------|
|             | Distribution circuit     | 1.00                                  | 1.00   | 1.00                                   |
| Pecidential | Lighting circuit         | 0.44                                  | 0.39   | 0.35                                   |
| Residential | Socket-outlet circuit    | 0.40                                  | 0.39   | 0.36                                   |
|             | Dedicated circuit        | 1.00                                  | 1.00   | 0.52                                   |
|             | Distribution circuit     | 1.00                                  | 1.00   | 1.00                                   |
| Sarvicas    | Lighting circuit         | 0.52                                  | 0.37   | 0.35                                   |
| JEIVICES    | Socket-outlet circuit    | 0.47                                  | 0.40   | 0.37                                   |
|             | Dedicated circuit        | 1.00                                  | 1.00   | 1.00                                   |
|             | Distribution circuit     | 1.00                                  | 1.00   | 1.00                                   |
| Inductor    | Lighting circuit         | 0.52                                  | 0.37   | 0.35                                   |
| muustiy     | Socket-outlet circuit    | 0.62                                  | 0.44   | 0.38                                   |
|             | Dedicated circuit        | 1.00                                  | 1.00   | 1.00                                   |

#### Table 3-8: Kd factor per circuit type

2 3 4

Note: in distributed and in most dedicated circuits the loads are concentrated at the end of the circuit, resulting in a Kd factor of one.

#### 5 6

### 7 **Conclusion:**

8 Table 3-8 summarises the proposal for average values to be used in this study.

9

### 10 **3.1.4.7** *Effect of not simultaneous functioning of distributed loads*

Socket-outlets are connected to multiple loads and when they are not functioning simultaneously this will decrease load current in the circuit. Because losses are proportional to square of the loading current, the losses will be lower. This can be modelled by the so-called 'Rated Diversity Factor'. However, when considering all the loads served by one circuit as one aggregated load, this factor isn't necessary. The diversity factor effect is then incorporated in the load factor and load form factor of the 'circuit load'.

# 1819 Conclusion:

By using load factor and load form factors associated with a 'circuit load', this factor can be omitted.

## 22 3.1.4.8 Ambient temperature

23

24 Conductor losses are temperature dependent and therefore higher ambient 25 temperatures have a negative effect on the losses and the current-carrying capacity of 26 the cable. For instance, according IEC 60364-5-52 a correction factor of 0.87 has to be 27 applied for PVC cables installed in locations with a ambient temperature of 40°C.

28

## 29 **Conclusion:**

1 An ambient temperature of 20°C will be assumed, because this is the normal indoor 2 temperature.

#### 3 3.1.4.9 Temperature effect caused by the 'method of installation'

4

5 Conductor losses are temperature dependent and therefore also the so-called method 6 of installation influences the losses and hence the current-carrying capacity of the cable. 7 This effect is included in standard IEC 60364-5-52 which defines correction factors 8 according to the installation method. IEC 60364-5-52 describes 73 reference 9 installation methods. For each method different correction factors are defined to 10 calculate the current carrying capacity. Figure 3-9 shows some examples of methods of 11 installation and Figure 3-10 the most typical thermal conditions.

12



| I | A/G    | i Tri | ays   |     | b                      |
|---|--------|-------|-------|-----|------------------------|
|   |        | 8     |       |     | 888                    |
| M | aintai | ned a | Spaci | ing | Without Tray Top Cover |

Figure 3-10: Different thermal conditions

#### 2 3 **Conclusion:**

The correction factors in IEC 60364-5-52 related to the method of installation have an impact on the selection of the cross section of a cable (fixed current carrying capacity), or on the current carrying capacity (fixed cross section). The cross section and the current carrying capacity are incorporated in the formulas calculating the losses in a circuit (see formula 3.4 and 3.7).

9

1

## 10 3.1.4.10 Single or three phase system

11 See also 3.1.4.1. Of course, in order to have a three phase load connection a three 12 phase grid connection is required.

#### 13

### 14 **Conclusion:**

15 See 3.1.4.1.

### 16 3.1.4.11 Number of distribution levels

An electrical installation has one or more distribution levels (see definition in Task 1).
Small installations have just one level. Larger installations in general have two levels.
Exceptionally, very large installations or installations with special design requirements
may have a third level.

21

### 22 Conclusion:

No statistics on distribution levels is available. Therefore, two levels will be regarded as a reference design in the industry and service sector.

### 25 3.1.4.12 Rated Diversity Factor DF at installation level

The Diversity Factor according IEC 61439-3 recognizes that multiple functional units (in this case outgoing circuits at a distribution board or assembly) are in practice not fully loaded simultaneously or are intermittently loaded. The Diversity Factor should be used when calculation the total load in an distribution board/assembly and higher level based upon the sum of the loads in the outgoing circuits of the distribution board.

31

Different Rated Diversity Factor may be stated for groups of outgoing circuits or for all
 the outgoing circuits of the assembly/distribution board. Within each of these groups,
 including the complete assembly, the sum of the rated currents multiplied by the Rated
 Diversity Factor shall be equal to or higher than the assumed loading currents.

36

IEC 61439-3 states that in case of lack of information relating to the actual load
 currents, the Manufacturer will select and declare appropriate Rated Diversity Factor
 values, preferably from the conventional values listed in in Table 3-9.

| 1 | Table 3-9: | Diversity factor in | function of the | number of circuits | according IEC 61439-3 |
|---|------------|---------------------|-----------------|--------------------|-----------------------|
|---|------------|---------------------|-----------------|--------------------|-----------------------|

| Number of outgoing circuits | Diversity Factor (DF) |
|-----------------------------|-----------------------|
| 2 and 3                     | 0,8                   |
| 4 and 5                     | 0,7                   |
| 6 to 9 inclusive            | 0,6                   |
| 10 and above                | 0,5                   |

## 4 **Conclusion:**

5 This factor should be used when the total load is calculated in function of the loading of 6 each outgoing circuit at the specific distribution level. However, in task 4 till task 7 the 7 base cases and their associated parameters are specified at circuit level and not at 8 electrical installation level. Consequently, this factor isn't relevant for this study. See 9 also conclusion in 3.1.4.7.

### 10 **3.1.5** Parameters related to the building and loading

Losses in cables depend on the current loading, the relevant loading parameters areexplained hereafter.

13

## 14 **3.1.5.1** Load Factor (*a*<sub>c</sub>) and load form factor (*Kf*)

This section describes the used Load factors ( $a_c = Pavg/S$ ) and Load Form factors (Kf = Prms/Pavg) as defined in chapter 1. To simplify the calculation the loads served by a circuit is regarded as one single virtual load at the end of the circuit (this the reason why  $a_c$  and not a is used;  $a_c$  stands for corrected or circuit load factor). The Kd distribution factor will compensate this change in topology. The diversity of the different single loads is incorporated into the virtual load.

21

The load factor  $a_c$  is in between 0 and 1. The Load Form factor is always larger than or equal to 1. The product of the load factor and the load form factor is always less than or equal to 1.

25

Clearly in real conditions current loading (I) (and temperature) have an important influence. In order to calculate the annual energy loss of cables from data files with an estimation of the current loading, it is convenient to switch to time independent parameters and use the so-called RMS load (Prms) or root-mean-square value of the power load load profile. The RMS load values can be computed from data files, e.g. from the Synthetic Load Profiles. The study will investigate which load form factors are most common and could be used in later tasks for assessment of base cases.

33

When calculating the losses in a circuit, the load profiles for each load of the circuit have to be known. These statistics are however not available. Synthetic Load Profiles are aggregated averaged load profiles of building units (households), and can differ largely from the load profile of a single circuit, and can therefore not be used.

38

Therefore some general assumptions are made in the calculation of the load and form factors. For instance office lighting<sup>7</sup> have typical annual operating hours ranging from

<sup>&</sup>lt;sup>7</sup> Preparatory Studies for Eco-design Requirements of EuPs: 'Final report lot 8 on office lighting' (see www.eup4light.net)

1 2000-2500 hours per year which should be equivalent to a load factor (Pavg/S) = 2 2250h/8760h = 26 %. Assuming the lights are all switched on 2250h a year, and all 3 are switched off the rest of the year results in a Kf equal to 1.96. In case of 2 periods 4 with two distinct power usage P1 and P2, Kf is calculated as follows:

$$Kf = \frac{\sqrt{\frac{period1 \ x \ P1^2 + period2 \ x \ P2^2}{period1 + period \ 2}}}{\frac{period1 \ x \ P1 + period2 \ x \ P2}{period1 \ x \ P1 + period \ 2 \ x \ P2}}$$

6 7

5

8 Table 3-10, Table 3-11 and Table 3-12 show the calculation of the load factors and load 9 form factors and the assumptions made for this calculation. The calculation is 10 performed per circuit type and per sector. For each of these combinations a low, a 11 reference and a high value is provided.

There are two periods in this model: P1 period 1 and P2 period 2. The sum of the 2 periods is 168, which can be seen as 168 hours in one week. There are two load levels represented by P1 and P2. The ratio between the P2 and P1 load level is given by the P2/P1 ratio. In this model P1 was always 100 (high loading), and P2 (low loading) was always lower than P1. The absolute load values in this calculation have no influence on the calculation.

18

To calculate the load factor based upon periods, an additional use factor is introduced.The load factor is calculated as follows:

21

$$\alpha_{c} = \frac{period \ 1 + P2/P1 \ x \ period \ 2}{period \ 1 + period \ 2} \ x \ use \ factor$$

22

The use factor indicates the ratio of the design load and the rated maximum load (current-carrying capacity) of the circuit. For instance when assuming 0.3 for a lighting circuit (circuit breaker 10 A, 230 Vac, i.e S= 2300 W) it means that the design load of the circuit is about 690 W.

27

The terms P2 period 2, Prms, Pavg, Kf,  $a_c$  and Kf. $a_c$  are calculated. The other terms are input values and represent the assumptions.

|                     | Residential |           |       |                       |      |      |      |          |        |                      |      |      |  |  |
|---------------------|-------------|-----------|-------|-----------------------|------|------|------|----------|--------|----------------------|------|------|--|--|
|                     | Lig         | hting cir | rcuit | Socket-outlet circuit |      |      | Ded  | icated c | ircuit | Distribution circuit |      |      |  |  |
|                     | Low         | Ref       | High  | Low                   | Ref  | High | Low  | Ref      | High   | Low                  | Ref  | High |  |  |
| Use factor          | 0.2         | 0.3       | 0.4   | 0.1                   | 0.2  | 0.3  | 0.3  | 0.4      | 0.5    | 0.05                 | 0.1  | 0.3  |  |  |
| P2/P1 ratio         | 1%          | 5%        | 10%   | 1%                    | 10%  | 20%  | 1%   | 1%       | 1%     | 20%                  | 30%  | 40%  |  |  |
| P1 period 1         | 100         | 100       | 100   | 100                   | 100  | 100  | 100  | 100      | 100    | 100                  | 100  | 100  |  |  |
| Period 1            | 14          | 21        | 28    | 5                     | 15   | 25   | 4    | 7        | 14     | 70                   | 80   | 90   |  |  |
| P2 period 2         | 1           | 5         | 10    | 1                     | 10   | 20   | 1    | 1        | 1      | 20                   | 30   | 40   |  |  |
| Period 2            | 154         | 147       | 140   | 163                   | 153  | 143  | 164  | 161      | 154    | 98                   | 88   | 78   |  |  |
| Period 1 + Period 2 | 168         | 168       | 168   | 168                   | 168  | 168  | 168  | 168      | 168    | 168                  | 168  | 168  |  |  |
| Prms                | 29          | 36        | 42    | 17                    | 31   | 43   | 15   | 20       | 29     | 66                   | 72   | 78   |  |  |
| Pavg                | 9           | 17        | 25    | 4                     | 18   | 32   | 3    | 5        | 9      | 53                   | 63   | 72   |  |  |
| Kf                  | 3.12        | 2.11      | 1.67  | 4.38                  | 1.74 | 1.34 | 4.61 | 3.99     | 3.12   | 1.24                 | 1.14 | 1.08 |  |  |
| a <sub>c</sub>      | 0.02        | 0.05      | 0.10  | 0.00                  | 0.04 | 0.10 | 0.01 | 0.02     | 0.05   | 0.03                 | 0.06 | 0.22 |  |  |
| Kf.a <sub>c</sub>   | 0.06        | 0.11      | 0.17  | 0.02                  | 0.06 | 0.13 | 0.05 | 0.08     | 0.14   | 0.03                 | 0.07 | 0.23 |  |  |

1 Table 3-10: Load form factor and load factors in the residential sector

| Services            |      |          |       |                       |      |      |      |          |        |                      |      |      |  |
|---------------------|------|----------|-------|-----------------------|------|------|------|----------|--------|----------------------|------|------|--|
|                     | Lig  | hting ci | rcuit | Socket-outlet circuit |      |      | Dedi | icated c | ircuit | Distribution circuit |      |      |  |
|                     | Low  | Ref      | High  | Low                   | Ref  | High | Low  | Ref      | High   | Low                  | Ref  | High |  |
| Use factor          | 0.4  | 0.5      | 0.7   | 0.2                   | 0.3  | 0.4  | 0.6  | 0.7      | 0.8    | 0.6                  | 0.7  | 0.8  |  |
| P2/P1 ratio         | 10%  | 20%      | 30%   | 10%                   | 20%  | 30%  | 10%  | 20%      | 30%    | 10%                  | 20%  | 30%  |  |
| P1 period 1         | 100  | 100      | 100   | 100                   | 100  | 100  | 100  | 100      | 100    | 100                  | 100  | 100  |  |
| Period 1            | 50   | 60       | 70    | 50                    | 60   | 70   | 70   | 80       | 90     | 70                   | 80   | 90   |  |
| P2 period 2         | 10   | 20       | 30    | 10                    | 20   | 30   | 10   | 20       | 30     | 10                   | 20   | 30   |  |
| Period 2            | 118  | 108      | 98    | 118                   | 108  | 98   | 98   | 88       | 78     | 98                   | 88   | 78   |  |
| Period 1 + Period 2 | 168  | 168      | 168   | 168                   | 168  | 168  | 168  | 168      | 168    | 168                  | 168  | 168  |  |
| Prms                | 55   | 62       | 68    | 55                    | 62   | 68   | 65   | 71       | 76     | 65                   | 71   | 76   |  |
| Pavg                | 37   | 49       | 59    | 37                    | 49   | 59   | 48   | 58       | 68     | 48                   | 58   | 68   |  |
| Kf                  | 1.50 | 1.27     | 1.16  | 1.50                  | 1.27 | 1.16 | 1.37 | 1.21     | 1.13   | 1.37                 | 1.21 | 1.13 |  |
| a <sub>c</sub>      | 0.15 | 0.24     | 0.41  | 0.07                  | 0.15 | 0.24 | 0.29 | 0.41     | 0.54   | 0.29                 | 0.41 | 0.54 |  |
| Kf.a <sub>c</sub>   | 0.22 | 0.31     | 0.48  | 0.11                  | 0.19 | 0.27 | 0.39 | 0.49     | 0.61   | 0.39                 | 0.49 | 0.61 |  |

## 1 Table 3-11: Load form factor and load factors in the services sector

|                     | Industry |          |       |                       |      |      |      |          |        |                      |      |      |  |  |
|---------------------|----------|----------|-------|-----------------------|------|------|------|----------|--------|----------------------|------|------|--|--|
|                     | Lig      | hting ci | rcuit | Socket-outlet circuit |      |      | Ded  | icated c | ircuit | Distribution circuit |      |      |  |  |
|                     | Low      | Ref      | High  | Low                   | Ref  | High | Low  | Ref      | High   | Low                  | Ref  | High |  |  |
| Use factor          | 0.4      | 0.5      | 0.7   | 0.2                   | 0.4  | 0.6  | 0.6  | 0.7      | 0.8    | 0.6                  | 0.7  | 0.8  |  |  |
| P2/P1 ratio         | 40%      | 50%      | 60%   | 40%                   | 50%  | 60%  | 60%  | 75%      | 90%    | 52%                  | 65%  | 78%  |  |  |
| P1 period 1         | 100      | 100      | 100   | 100                   | 100  | 100  | 100  | 100      | 100    | 100                  | 100  | 100  |  |  |
| Period 1            | 50       | 60       | 70    | 50                    | 60   | 70   | 70   | 80       | 90     | 70                   | 80   | 90   |  |  |
| P2 period 2         | 40       | 50       | 60    | 40                    | 50   | 60   | 60   | 75       | 90     | 52                   | 65   | 78   |  |  |
| Period 2            | 118      | 108      | 98    | 118                   | 108  | 98   | 98   | 88       | 78     | 98                   | 88   | 78   |  |  |
| Period 1 + Period 2 | 168      | 168      | 168   | 168                   | 168  | 168  | 168  | 168      | 168    | 168                  | 168  | 168  |  |  |
| Prms                | 64       | 72       | 79    | 64                    | 72   | 79   | 79   | 88       | 95     | 76                   | 84   | 90   |  |  |
| Pavg                | 58       | 68       | 77    | 58                    | 68   | 77   | 77   | 87       | 95     | 72                   | 82   | 90   |  |  |
| Kf                  | 1.11     | 1.06     | 1.03  | 1.11                  | 1.06 | 1.03 | 1.03 | 1.01     | 1.00   | 1.05                 | 1.02 | 1.01 |  |  |
| Lf                  | 0.23     | 0.34     | 0.54  | 0.12                  | 0.27 | 0.46 | 0.46 | 0.61     | 0.76   | 0.43                 | 0.57 | 0.72 |  |  |
| Kf.a <sub>c</sub>   | 0.26     | 0.36     | 0.55  | 0.13                  | 0.29 | 0.47 | 0.47 | 0.61     | 0.76   | 0.45                 | 0.58 | 0.72 |  |  |

## 1 Table 3-12: Load form factor and load factors in the industry sector

#### 1 2 **Conclusion:**

3 4

Table 3-13 contains the summary of the load factors ( $a_c$ ) and load form factors (Kf) calculated in Table 3-10, Table 3-11 and Table 3-12.

- 5 6
- 7

Table 3-13: Load factors (*a<sub>c</sub>*) and load form factors (*Kf*) to be used in this study

|                          |       | Liį  | ghting circ | uit  | Socke | et-outlet o | ircuit | Dec  | dicated cir | cuit | Dist | ribution ci | rcuit |
|--------------------------|-------|------|-------------|------|-------|-------------|--------|------|-------------|------|------|-------------|-------|
|                          |       | Low  | Ref         | High | Low   | Ref         | High   | Low  | Ref         | High | Low  | Ref         | High  |
|                          | Kf    | 3.12 | 2.11        | 1.67 | 4.38  | 1.74        | 1.34   | 4.61 | 3.99        | 3.12 | 1.24 | 1.14        | 1.08  |
| Residential              | ας    | 0.01 | 0.05        | 0.10 | 0.00  | 0.04        | 0.10   | 0.01 | 0.02        | 0.05 | 0.01 | 0.06        | 0.22  |
| Sector                   | Kf.αc | 0.03 | 0.11        | 0.17 | 0.01  | 0.06        | 0.13   | 0.02 | 0.08        | 0.14 | 0.02 | 0.07        | 0.23  |
| 6 i                      | Kf    | 1.50 | 1.27        | 1.16 | 1.50  | 1.27        | 1.16   | 1.37 | 1.21        | 1.13 | 1.37 | 1.21        | 1.13  |
| Services                 | ας    | 0.07 | 0.24        | 0.41 | 0.04  | 0.15        | 0.24   | 0.14 | 0.41        | 0.54 | 0.14 | 0.41        | 0.54  |
| Sector                   | Kf.αc | 0.11 | 0.31        | 0.48 | 0.06  | 0.19        | 0.27   | 0.20 | 0.49        | 0.61 | 0.20 | 0.49        | 0.61  |
| Industry<br>sector       | Kf    | 1.11 | 1.06        | 1.03 | 1.11  | 1.06        | 1.03   | 1.03 | 1.01        | 1.00 | 1.05 | 1.02        | 1.01  |
|                          | ας    | 0.12 | 0.34        | 0.54 | 0.06  | 0.27        | 0.46   | 0.23 | 0.61        | 0.76 | 0.22 | 0.57        | 0.72  |
|                          | Kf.αc | 0.13 | 0.36        | 0.55 | 0.06  | 0.29        | 0.47   | 0.24 | 0.61        | 0.76 | 0.23 | 0.58        | 0.72  |
| αc correction factor 0.5 |       | 0.5  | 1           | 1    | 0.5   | 1           | 1      | 0.5  | 1           | 1    | 0.5  | 1           | 1     |

8

9 10

10

12 Crosschecks in later tasks indicated that the minimum average value is too high. This 13 correction (results are multiplied with the corresponding correction factor shown in the 14 last row of the table) is already incorporated in the results listed in Table 3-13. The 15 maximum and minimum values are used for the sensitivity analysis

# 16 **3.1.5.2** Power factor

17 The power factor is the real power used by the load divided by the apparent power 18 required by the load conditions, see definition in Task 1.

19 20

# 21 **Conclusion:**

Although the power factor will differ from circuit to circuit depending on the load type, it is proposed to use PF = 0.8 (see IEC 60364-5-52/Annex G) as the default power factor.

# 25 3.1.5.3 Impact of harmonics

26 Current harmonics can cause extra losses due to the skin effect and uneven harmonics

can cause overload current in the neutral wire<sup>8</sup>. Current losses depend on the type of
 load<sup>9</sup>.

Harmonic current is limited by standard EN 61000-3-2, especially for lighting equipment.

31

# 32 **Conclusion:**

<sup>&</sup>lt;sup>8</sup> Leonardo Energy Power Quality Initiative (2001), 'APPLICATION NOTE HARMONICS: CAUSES AND EFFECTS'

 $<sup>^{9}</sup>$  Leonardo Energy Power Quality Initiative (2001), 'APPLICATION NOTE HARMONICS: CAUSES AND EFFECTS'

1 It is proposed to neglect these losses in further tasks.

Rationale: These losses are neglected because losses are already modelled by the
fundamental load current (50 Hz) and more precise data on typical harmonic current of
loads is missing.

5

6

# 3.1.5.4 Number of loaded conductors and impact of phase imbalance and harmonics

9 The number of loaded conductors in a single phase circuit is 2, i.e. the phase conductor 10 and neutral conductor.

11

12 IEC 60364-5-52 article 523.6.1 states: "The number of conductors to be considered in 13 a circuit are those carrying load current. Where it can be assumed that conductors in 14 polyphase circuits carry balanced currents, the associated neutral conductor need not 15 be taken into consideration. Under these conditions, a four-core cable is given the same 16 current-carrying capacity as a three-core cable having the same conductor cross-17 sectional area for each line conductor. Four- and five-core cables may have higher 18 current-carrying capacities when only three conductors are loaded.

19 This assumption is not valid in the case of the presence of third harmonic or multiples 20 of 3 presenting a THDi (total harmonic distortion) greater than 15%.".

21

IEC 60364-5-52 article 523.6.2 states: "Where the neutral conductor in a multicore cable carries current as a result of an imbalance in the line currents, the temperature rise due to the neutral current is offset by the reduction in the heat generated by one or more of the line conductors. In this case, the neutral conductor size shall be chosen on the basis of the highest line current.".

27

IEC 60364-5-52 Annex E states: "Where the neutral current is expected to be higher than the line current then the cable size should be selected on the basis of the neutral current. If the neutral current is more than 135 % of the line current and the cable size is selected on the basis of the neutral current, then the three line conductors will not be fully loaded.".

33

Table 3-14 shows the reduction factors that should be applied to the design load to calculate the conductor section. For instance, consider a three-phase circuit with a design load of 39 A to be installed using four-core PVC insulated cable clipped to a wall, installation method C. A 6 mm<sup>2</sup> cable with copper conductors has a current-carrying capacity of 41 A and hence is suitable if harmonics are not present in the circuit. If 20 % third harmonic is present, then a reduction factor of 0.86 is applied and the design load becomes:39/086 = 45 A. As a result a 10 mm<sup>2</sup> cable is necessary.

#### 1 Table 3-14: Reduction factors for harmonic currents in four-core and five-core cables<sup>10</sup>

| Third harmonic content | Reduction factor                           |                                               |  |  |  |  |
|------------------------|--------------------------------------------|-----------------------------------------------|--|--|--|--|
| of line current<br>%   | Size selection is based<br>on line current | Size selection is based<br>on neutral current |  |  |  |  |
| 0 – 15                 | 1,0                                        | -                                             |  |  |  |  |
| 15 – 33                | 0,86                                       | -                                             |  |  |  |  |
| 33 – 45                | -                                          | 0,86                                          |  |  |  |  |
| > 45                   | -                                          | 1,0                                           |  |  |  |  |

2 3

4

5 Conclusion:

6 The number of loaded conductors in a **single phase** circuit is **2**.

By lack of statistics on the imbalance in the line currents and the THDi in electric
circuits, it is proposed to use a balanced system with a THdi of less than 15 % in this

study. Consequently, the number of loaded cores in a 3-phase circuit is **3.** 

#### 11 **3.1.6** Formulas used for power losses in cables

The general formulas for power losses and energy losses are the following: 12 Power losses (in a cable) (Watt): the power losses at a certain moment of time 13 14 t can be calculated by the following formula: 15  $P(t) = R.I^{2}(t)$  (Watt) (formula 3.3) 16 17 18 The resistance of a cable at temperature t can be calculated by the following 19 formula: 20 (formula 3.4) 21  $R_t = \rho_t . I/A (\Omega)$ 22 where, 23  $p_t$  = specific electrical resistance of the conductor at temperature t 24  $(\Omega.mm^{2}/m)^{11}$ 25 I= length of the cable (meter) 26 A= cross sectional area of the conductor  $(mm^2)$ 27 28 Energy losses(E) according to the laws of physics: 29  $E = \int_0^T R I^2(t) \qquad \text{(formula 3.5)}$ 30 31 32 Energy loss in cables according to IEC 60287-3-2: 33 energy loss during the first year =  $I^2 max$ . RL.L.NP.NC.T (formula 3.6) 34 35 36 where, 37 Imax is the maximum load on the cable during the first year, in A; 38 RL is cable resistance per unit length; • L is the cable length, in m; 39

<sup>&</sup>lt;sup>10</sup> IEC 60364-5-52

 $<sup>^{11}</sup>$   $\rho_t$  is the resistivity of conductors in normal service, taken equal to the resistivity at the temperature in normal service, i.e. 1,25 times the resistivity at 20 °C, or 0,0225  $\Omega mm^2/m$  for copper and 0,036  $\Omega mm^2/m$  for aluminium; IEC 60364-5-52 annex G

| 1<br>2<br>3<br>4<br>5<br>6                   | <ul> <li>NP is the number of phase conductors per circuit (=segment in this context);</li> <li>NC is the number of circuits carrying the same type and value of load;</li> <li>T is the equivalent operating time, in h/year.</li> </ul>                                                                                                             |
|----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7<br>8<br>9                                  | Note: the formula used in IEC 60287-3-2 is only applicable to calculate the cable losses in a 'single cable segments' of a circuit.                                                                                                                                                                                                                  |
| 11<br>12<br>13<br>14                         | • The formula in this study to calculate the annual energy loss (E (loss)) in a circuit cable based upon the above mentioned factors is:                                                                                                                                                                                                             |
| 15<br>16<br>17                               | $E_{circuit,}(y) [kVAh] = Kd . R_t . Imax2 . (a_c . Kf)2 . 8760 / 1000 (formula 3.7)$                                                                                                                                                                                                                                                                |
| 18<br>19<br>20<br>21<br>22<br>23             | <ul> <li>where,</li> <li>Kd = the distribution factor</li> <li>R<sub>t</sub> = cable resistance at temperature t (see formula 3.4)</li> <li>Imax = the maximum rated current of the cable</li> <li>a<sub>c</sub> = The corrected load factor</li> <li>Kf = Load form factor (=Prms/Pavg)</li> </ul>                                                  |
| 24<br>25<br>26<br>27                         | Note: Prms requires the calculation of an integral of the load profile and therefore aligns with formula 3.5.                                                                                                                                                                                                                                        |
| 27<br>28<br>29<br>30<br>31                   | • The formula in this study to calculate the annual active energy (E (active)) transported via the circuit cable based upon the above mentioned factors is:                                                                                                                                                                                          |
| 32<br>33                                     | $E_{active}(y) [kWh] = V . Imax . a_c . Kf . PF . 8760 / 1000 $ (single phase)                                                                                                                                                                                                                                                                       |
| 34<br>35<br>36                               | $E_{active}(y) [kWh] = \sqrt{3} \cdot V \cdot Imax \cdot a_c \cdot Kf \cdot PF \cdot 8760 / 1000  (three phase) \\ (formula 3.8)$                                                                                                                                                                                                                    |
| 37<br>38<br>39<br>40<br>41<br>42<br>43<br>44 | <ul> <li>where,</li> <li>V = electrical installation voltage (V =230 for single phase and 400 for three phase)</li> <li>Imax = the maximum rated current of the cable</li> <li>a<sub>c</sub> = The corrected load factor</li> <li>Kf = Load form factor (=Prms/Pavg)</li> <li>PF = the power factor of the load served by the power cable</li> </ul> |
| 45<br>46<br>47<br>48                         | • The next formula defines the loss ratio as the losses in the cable (formula 3.7) divided by the active energy transported via the circuit (formula 3.8):                                                                                                                                                                                           |
| 49<br>50<br>51<br>52<br>53                   | Loss ratio = $E_{circuit}(y) / E_{active}(y)$ (formula 3.9)                                                                                                                                                                                                                                                                                          |

# **3.2** Systems aspects of the use phase for ErPs with indirect impact

2 The following systems are impacted in the use phase by the ErP.

## 3 3.2.1 Building space heating and cooling system

Cable losses are dissipated in the form of heat energy and therefore contribute to socalled 'internal heat gains', this has and impact on the building heating and cooling requirements. The impact can be positive when heating is needed or negative when cooling is needed.

8

9 **Conclusion:** because the impact can be positive or negative and it is not the primary 10 function of the cable to contribute to the heating it is proposed to further neglect this 11 effect in the study.

12

13

# 14 3.3 End-of-Life behaviour

#### 15 General

16 Copper is a valuable material and therefore cables are in general returned for recycling. 17 In 2009 recycled copper met 45.7% of Europe's copper demand<sup>12</sup>. In this process PVC 18 insulation is separated mechanically from copper with shredders and granulators. The 19 main purpose is to recover the valuable copper, but when transport cost are 20 economically viable PVC insulation is also sold for recycling. Recycling of PVC can be 21 done with Vinyloop technology<sup>13</sup>. Figure 3-11 shows the general recycling flow of power 22 cables.

23



24

25

Figure 3-11: Recycling flow of wires and cables<sup>14</sup>.

#### 26 Stripping of the cable

According to a recent study by Flanders PlasticVision<sup>14</sup>, metal recyclers with a focus on cables are mostly interested in the metals due to the copper and consider the plastic insulation as waste. Additionally, most of the European recyclers will only treat cables if they contain at least 40 to 45% copper as the shredder and separation costs will be too high to be economically viable in the case of lower copper content. Cable waste containing less copper is shipped towards low cost markets (e.g. China and India)

<sup>&</sup>lt;sup>12</sup> <u>http://eurocopper.org/copper/copper-information.html</u>

<sup>&</sup>lt;sup>13</sup> http://www.chemicals-technology.com/projects/ferrara/

<sup>&</sup>lt;sup>14</sup> Proposal on material criteria for the product group: "Cables in closed circuit", May 2014, commissioned by OVAM.

- where it is still economically viable to strip cables manually. An advantage of the manual process is the better separation of the materials and therefor a higher purity
- 3 can be obtained. The volume of this shipped waste is told to be more than 50% of the

4 collected cable waste.



Figure 3-12: Schematic diagram of mechanical recycling process<sup>14</sup>, see Figure 3-14 for
 more details.

8 The study<sup>14</sup> also mentions that not all cable waste is collected as a mixture of copper 9 and plastic insulation. This is the case when the workload of electric installation 10 companies is low and that those companies will strip cable waste themselves with basic 11 stripping machines (see Figure 3-13) in order to get higher copper prices. Plastic waste 12 that is generated during this process always ends up in the mixed waste. In Figure 3-13 13: Basic cable stripping machines14. 14 *Table 3-15* the advantages and disadvantages are given between a mechanical or

- 15 manual separation process of cables.
- 16



17

18

Figure 3-13: Basic cable stripping machines<sup>14</sup>.

19 Table 3-15: Comparison between mechanical and manual separation process<sup>14</sup>.

| Type of processing            | Advantages                                                                                        | Disadvantages                                                                                                                      |
|-------------------------------|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| Mechanical shredder           | <ul> <li>High throughput (multiple<br/>tons/hour)</li> <li>Cable dimension flexibility</li> </ul> | <ul> <li>Need for high copper content</li> <li>Always residual copper in<br/>plastic residue</li> </ul>                            |
| Manual/basic wire<br>stripper | <ul> <li>High purity both copper and<br/>plastic</li> </ul>                                       | <ul> <li>Low output (10-15 kg/hour)</li> <li>Change of settings per cable dimension</li> <li>Economically barely viable</li> </ul> |

#### 1. Sorting of copper cables

- As a first step, a manual pre-sorting is done in different cable types (e.g. stranded cable, domestic cable and industry cable).
- 2. Removal of eventually existing attachments
  - In order to obtain a highest possible homogeneous fraction in the subsequent process, it is necessary to separate possible included attachments (e.g. power plug).





#### 3. Pre-shredding of tangled cables by using UNTHA - shredding technology

In order to obtain the best possible capacity of the treatment plant, a pre-shredding of the cable tangles is necessary. By using the patented UNTHA four-shaft technology and applying a perforated screen, a homogeneous flow of material is resulting. By means of a discharge conveyor belt with FE-separation the material is transported to the next shredding step.



#### 5. Segregation and separation

A sophisticated segregation and separation technique is finally resulting in a separation into fractions of pure copper granules as well as in plastics and rubber fractions coming from the cable coating.

Figure 3-14: Detailed process flow of cable waste shredding<sup>14</sup>.

#### 1 Vinyloop – PVC recycling

2 In the study of the OVAM<sup>14</sup>, another possibility for stripping power cables with softened PVC jacket and insulation was described, which is called Vinyloop<sup>®</sup>. Vinyloop is a 3 4 chemical extraction technology developed by Solvay. The solvent-based technology recycles PVC and produces high-quality PVC. In Figure 3-15 the process is illustrated. 5 In the beginning of the process, cable waste is reduced in size and brought into contact 6 7 with the appropriate solvent, dissolving the softened PVC and separating the nondissolved (non-ferrous) fraction. The solution, i.e. the solvent and dissolved PVC, is 8 9 then submitted to a steam distillation process in order to recycle the solvent. At the end, the PVC compound fraction is dried and separated. 10

Figure 3-16 shows the amounts of recycled PVC since 2012. Recovered PVC material 11 12 can technically be used for cable applications and coverings (e.g. flooring and tarpaulins), however this is currently not the case due to the price (Vinyloop is an 13 expensive process) and colour. 14

15



Figure 3-15: The Vinyloop<sup>®</sup> process.

16



frameworks.

#### 1 Waste treatment XLPE

Recycling of cross-linked polyethelene (XLPE) is not possible yet due to its chemical cross-linked structure and the difficulty of thermo-plasticizing it. The three-dimensional lattice structure makes it impossible to melt it down again for moulding. As a result, almost all XLPE waste is currently incinerated for energy-recovery or disposed of in landfilles. There is no hope that an effective industrial-scale material recycling technology can be implemented.<sup>14</sup>

#### Use of recycled materials

According to the study by Flanders PlasticVision<sup>14</sup>, there is no problem in using recycled copper and aluminium in new power cables provided it does not include any impurities. Cable material is rather specific due to its inherent properties, such as fire and mechanical properties. Using other sources of post-consumer waste is technically feasible, but will need very specific entry control and reprocessing.

#### **EOL parameters**

Note: This study deals with new power cables entering the market and that will have to be recycled when buildings are renovated (>20 years).

19 20

15 16

17

18

21 22

23 24

25

8 9

## The following assumptions are made in this study:

- The End-of-Life (EOL) parameters are shown in Table 3-17. These match the default parameters of the EcoReport tool<sup>15</sup>, except that 0% re-use for the non-ferro is used instead of 1%. Cables, removed from buildings, are not re-used. Repair & maintenance practice: not existing
  - Second hand use: not existing
- 26 27

28

29

Table 3-16: Lifetime parameters per sector

30

| Sector                  | Product life | Service life | Vacancy |
|-------------------------|--------------|--------------|---------|
| Unit                    | Year         | Year         | %       |
| Residential sector      | 64.00        | 60.80        | 5%      |
| Services sector         | 25.00        | 23.75        | 5%      |
| Industry sector         | 25.00        | 23.75        | 5%      |
| Total sector (weighted) | 41.60        | 39.52        | 5%      |

<sup>&</sup>lt;sup>15</sup> EcoReport Tool version 3.06, VHK, MEErP 2011 METHODOLOGY PART 1 and PART 2

|                                                      | Bulk Plastics | TecPlastics | Ferro | Non-ferro | Coating | Electronics | Misc. , excluding<br>refrigant & Hg | refrigerant | Hg (mercury),<br><b>in mg/unit</b> | Extra | Auxiliaries |
|------------------------------------------------------|---------------|-------------|-------|-----------|---------|-------------|-------------------------------------|-------------|------------------------------------|-------|-------------|
| EoL mass fraction to re-use, in %                    | 1%            | 1%          | 1%    | 0%        | 1%      | 1%          | 1%                                  | 1%          | 1%                                 | 1%    | 5%          |
| EoL mass fraction to (materials) recycling, in %     | 29%           | 29%         | 94%   | 95%       | 94%     | 50%         | 64%                                 | 30%         | 39%                                | 60%   | 30%         |
| EoL mass fraction to (heat) recovery, in %           | 15%           | 15%         |       | 0%        |         | 0%          | 1%                                  | 0%          | 0%                                 | 0%    | 10%         |
| EoL mass fraction to non-recov. incineration, in %   | 22%           | 22%         |       | 0%        |         | 30%         | 5%                                  | 5%          | 5%                                 | 10%   | 10%         |
| EoL mass fraction to landfill/missing/fugitive, in % | 33%           | 33%         |       | 5%        |         | 19%         | 29%                                 | 64%         | 55%                                | 29%   | 45%         |

# Table 3-17: End of life parameters

2 3

# Note: according to Europacable<sup>16</sup>, for plastics the recycling rate of the insulation and sheath are quite unpredictable as it depends on:

| 6                                | <ul> <li>the kind of materials that is used in the insulation (rubber is poorly recyclable,</li> </ul>                                                                                                                                                                                                                                                                                                  |
|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7                                | plastic is better recyclable, XLPE is technically recyclable but there are no                                                                                                                                                                                                                                                                                                                           |
| 8                                | existing channels today);                                                                                                                                                                                                                                                                                                                                                                               |
| 9                                | <ul> <li>the possibility to separate the plastics between them and from the rest of the</li> </ul>                                                                                                                                                                                                                                                                                                      |
| 10                               | cable (which may depend on the cable design and plastics mix);                                                                                                                                                                                                                                                                                                                                          |
| 11                               | <ul> <li>the countries, which may have different legislation and collection/treatment</li> </ul>                                                                                                                                                                                                                                                                                                        |
| 12                               | capabilities.                                                                                                                                                                                                                                                                                                                                                                                           |
| 13<br>14<br>15<br>16<br>17<br>18 | As a result it is thus not possible to provide generic information that could be used whatever the cable type for all European countries.<br>Europacable does not agree on the 95% recycling and 5% landfilling/missing/fugitive for non-ferro, regarding the actual sales price for recycled copper and aluminium. These assumptions might be too pessimistic. However they cannot provide any updated |
| 19                               |                                                                                                                                                                                                                                                                                                                                                                                                         |

# 21 **3.4 Local infrastructure (barriers and opportunities)**

# 22 3.4.1 Opportunities

# 23 **3.4.1.1 Effect on electrical installation and end-user**

- Reliability, availability and nature of the energy will not change when the resistance of the electrical system is changed.
- 26 Increasing the wiring size will also not influence the users of the buildings because the
- 27 cables are typically hidden in walls or behind panels. Probably the users do not at all

28 notice whether the wirings are slightly thicker or thinner.

<sup>&</sup>lt;sup>16</sup> response of Europacable to second questionnaire

http://www.erp4cables.net/sites/erp4cables.net/files/attachments/Europacable%20Comments% 20Tasks%2012345f.pdf

#### 1 **3.4.1.2** Certification

2 Certification of the electric installation in buildings is in most of the EU countries 3 required by legislation. Measures at the level of the electrical installation could 4 therefore be verified and enforced at the certification stage. For instance in Belgium the 5 electrical installations in houses need to be recertified when a house is sold. In the 6 industrial and services sector in Belgium the local regulation specifies that 7 recertification of the electrical installation by a certification authority has to be 8 performed every 5 years.

9

### 10 **3.4.1.3 Refurbishment occasions**

11 Refurbishment occasions, like when houses are sold, provide an opportunity to 12 stimulate the renovation of electrical installations.

13

14 In the residential sector financial incentive structures are one of the main instruments 15 in redressing householders' unwillingness or inability to invest in energy efficiency by 16 themselves. Financial incentives for energy efficiency measures, like wall insulation or 17 new windows, may provide an opportunity for house owners to renew the electrical 18 installation. Additional financial incentives for renewal of electrical installation may 19 stimulate house owners to renew the electrical installation.

#### 20 **3.4.2 Barriers**

### 21 **3.4.2.1** Lock-in effect into existing installations

As illustrated in Figure 3-9 the cable can be placed direct in masonry or wooden wall, in conduits, cable ducts, on cable ladder, on brackets, on trays, in building voids, in a channel in the floor and so on. This installation method can create a kind of lock-in effect. In some of the methods the cables cannot be easily replaced unless a thorough renovation is done, for instance when the cables are placed direct in the masonry, making it more costly.

28

In the residential sector installers will choose more often methods of installation (lower cost) for which the cables are more difficult to replace. In the industry and services sector it often part of the requirements of the electrical installation that the cables have to be placed in ducts, conduits or voids, and are therefore easier to be replaced.

33

### 34 **3.4.2.2 Implication on material use**

Strategies like S+x or 2S will result for the same system in a larger use of material forthe conductor and the insulation.

37

38 The relative increase in conductor material can be calculated with Formula 3.10.

39 40 relative conductor volume increase  $=\frac{V_{s+x}-V_s}{V_s} = \frac{r_{s+x}^2-r_s^2}{r_s^2}$  (formula 3.10)

41 Where:

42  $V = (r^2)\pi L$ 

43 r = radius of conductor section



calculated with formula 3.10 and formula 3.11 respectively. In case of a dual wire 34 strategy the used conductor and insulation material volume doubles (=100% increase). 35

#### 36 3.4.2.3 Handling and space requirements

37 Strategies like dual wiring and S+x strategies requires more space for the wiring in the building. A higher cable volume could exclude any possible renewal due to lack of 38 space. Wires with larger sizes have also larger bending curves and are more difficult to 39 40 handle.

#### 3.4.2.4 Cost implications 41

42 Strategies like dual wiring and S+x strategies will increase the cost of: 43

Cable per circuit, •

- Cable transportation,
- Cable installation if more time is needed, 45 •
- Electrical installation equipment. Any modification of cables size may require a 46 47 modification of the other equipment such as socket-outlet and other accessories 48 in the electrical installation.

building infrastructure. Apart from the space, use of higher cross-section will
 induce a non-negligible cost increase of the installation due to building
 infrastructure.

4

### 5 3.4.2.5 Economic product life (=actual time to disposal)

6 Lifetime is a crucial component of the life cycle cost (LCC) calculation. Power cables are7 durable and have long working lives.

8

9 The following materials<sup>17</sup> (Table 3-18) with lifetime figures for a wide range of products 10 was developed for the US National Association of Home Builders (NAHB) Economics 11 Department based on a survey of manufacturers, trade associations and product 12 researchers.

13

#### Table 3-18: Lifetime of wiring according NAHB

| Electrical                                      | Life in years |  |  |  |
|-------------------------------------------------|---------------|--|--|--|
| Copper wiring, copper plated, copper clad       | 1001          |  |  |  |
| aluminum, and bare copper                       | 100+          |  |  |  |
| Armored cable (BX)                              | Lifetime      |  |  |  |
| Conduit                                         | Lifetime      |  |  |  |
| Source: Jesse Aronstein, Engineering Consultant |               |  |  |  |

14

15 16

17 International Association of Certified Home Inspectors (NACHI)<sup>18</sup> and NAHB charts 18 agree that copper wiring can last 100 years or more. But the real life expectancy of 19 your wiring is not in the copper. It's dependent on the wiring's insulation, and that 20 lifetime can vary widely.

21

The modern formula for thermoplastic NM-B type wiring dates from 1984, when the insulation's heat resistance was increased. The best guess is that it will provide over 100 years of service.

25

26 Therefore, it can be concluded that the economic product lifetime of wiring in modern electrical installations is not determined by the technical lifetime of wiring. Power cables 27 are part of the electrical installation and are in general replaced when the complete 28 electrical installation is renovated. An electrical installation will be partially or 29 completely renewed when the building environment served by the electrical installation 30 31 is changed or gets a new function. Also when new machinery or appliances are added to the installation it might be necessary to replace or upgrade part of the electrical 32 installation. Therefore it's safe to conclude that the lifetime of electrical wiring is 33 34 determined by the lifetime of the system of which the wiring is a component, thus the 35 electrical installation.

<sup>&</sup>lt;sup>17</sup> <u>http://www.oldhouseweb.com/how-to-advice/life-expectancy.shtml</u>

<sup>&</sup>lt;sup>18</sup> <u>http://www.improvementcenter.com/electrical/home-electrical-system-how-long-can-it-last.html</u>

The PEP ecopassport<sup>®19</sup> is an environmental declaration program for electric, electronic 1 2 and HVAC industries. Some Product Category Rules (PCR) have been developed, in 3 accordance with ISO 14025<sup>20</sup>, to carry out life cycle assessments of electrical, electronic 4 and HVAC products in a transparent manner. Some specific rules have been developed 5 for cables and wires and some lifetime of products are used as standard hypothesis and are provided in Annex 1 of PSR-0001-ed1-EN-2012 01 10 (Products Specific Rules for 6 Wires, cables and accessories)<sup>21</sup>. The PEP ecopassport program considers an average 7 lifetime of 30 years for energy cables in residential / tertiary building applications and 8 9 industrial buildings (see Table 3-19). Those hypotheses have been agreed among cable 10 manufacturers through the French cable Association (Sycabel)<sup>27</sup>.

11

Table 3-19: Lifetime of cables and wires according their application<sup>21</sup>

| AREAS ADDUCATIONS  | Applications                    | Lifetime |
|--------------------|---------------------------------|----------|
| AREAS ATTEICATIONS | Applications                    | (years)  |
|                    | Energy distribution networks    | 40       |
|                    | Railway networks                | 30       |
| INFRASTRUCTURES    | Telecom networks (fixed and     | 20       |
|                    | mobile phones)                  | 20       |
|                    | Oil, gas and petrochemicals     | 30       |
|                    | Handling                        | 10       |
|                    | Automation                      | 5        |
|                    | Nuclear                         | 40       |
| APPLICATIONS       | Wind turbines                   | 20       |
|                    | Photovoltaic power plants       | 10       |
|                    | Airports                        | 20       |
|                    | Civil aeronautics               | 15       |
|                    | Shipbuilding and marine         | 30       |
| UNBOARD SYSTEMIS   | Rolling stock                   | 30       |
|                    | Automotives (Cars and trucks)   | 10       |
|                    | Residential/tertiary/industrial | 30       |
|                    | Data centers                    | 10       |
|                    | LAN : residential               | 10       |
| BUILDING           | LAN: tertiary                   | 10       |
|                    | LAN: industrial (factories,     | 10       |
|                    | warehouses)                     | 10       |

12 13

14 The JRC report "Development of European Ecolabel and Green Public Procurement for Office buildings - Economical and market analysis"<sup>22</sup> of 2011 provides information on 15 building stocks, renovation rate, construction, building age, etc. In section 4.2.1 16 'Assumed working life of products and systems", it mentions different sources for the 17 working life of construction product and resulting tables (see Table 3-20, Table 3-21, 18 19 Table 3-22, and Table 3-22).

- 20 21 22
- 23 24
- 25
- 26

<sup>&</sup>lt;sup>19</sup> <u>http://www.pep-ecopassport.org</u>

<sup>&</sup>lt;sup>20</sup> Environmental labels and declarations - Type III environmental declarations - Principles and procedures

http://www.pep-ecopassport.org/documents/PSR0001-ed1-FR-20120110-

Fils%20Câbles%20et%20Materiels%20de%20Raccordement-.pdf

http://susproc.jrc.ec.europa.eu/buildings/docs/market%20and%20economic%20analysis.pdf

#### Table 3-20: Assumed working life of construction products<sup>23</sup>

| Assumed working life of<br>works (years)                                                                              |                                                            | Working life of cons     | Working life of construction products to be assumed in ETAGs, ETAS<br>and HENs (years) |                       |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|--------------------------|----------------------------------------------------------------------------------------|-----------------------|--|--|--|--|
| Category                                                                                                              | Years                                                      |                          | Category                                                                               |                       |  |  |  |  |
|                                                                                                                       |                                                            | Repairable or            | Repairable or replaceable                                                              | Lifelong <sup>2</sup> |  |  |  |  |
|                                                                                                                       |                                                            | easy replaceable         | with some more efforts                                                                 |                       |  |  |  |  |
| Short                                                                                                                 | 10                                                         | 10 <sup>1</sup>          | 10                                                                                     | 10                    |  |  |  |  |
| Medium                                                                                                                | 25                                                         | 10 <sup>1</sup>          | 25                                                                                     | 25                    |  |  |  |  |
| Normal                                                                                                                | 50                                                         | 10 <sup>1</sup>          | 25                                                                                     | 50                    |  |  |  |  |
| Long                                                                                                                  | 100                                                        | 10 <sup>1</sup>          | 25                                                                                     | 100                   |  |  |  |  |
| <sup>1</sup> In exceptional and justified cases, e.g. for certain repair products, a working life of 3 to 6 years may |                                                            |                          |                                                                                        |                       |  |  |  |  |
| be envisage                                                                                                           | be envisaged (when agreed by EOTA TB or CEN respectively). |                          |                                                                                        |                       |  |  |  |  |
| <sup>2</sup> When not                                                                                                 | repairable or repl                                         | aceable "easily" or "wit | th some more efforts".                                                                 |                       |  |  |  |  |

#### Table 3-21: Minimum design life of components<sup>24</sup>

| Design life of building | Inaccessible or<br>structural components | Components where<br>replacement is expensive or<br>difficult | Major<br>replaceable<br>components | Building services |
|-------------------------|------------------------------------------|--------------------------------------------------------------|------------------------------------|-------------------|
| Unlimited               | Unlimited                                | 100                                                          | 40                                 | 25                |
| 150                     | 150                                      | 100                                                          | 40                                 | 25                |
| 100                     | 100                                      | 100                                                          | 40                                 | 25                |
| 60                      | 60                                       | 60                                                           | 40                                 | 25                |
| 25                      | 25                                       | 25                                                           | 25                                 | 25                |
| 15                      | 15                                       | 15                                                           | 15                                 | 15                |
| 10                      | 10                                       | 10                                                           | 10                                 | 10                |

#### 

# Table 3-22: Design working life of components<sup>25</sup>

| Design working life (years) | Examples                                        |
|-----------------------------|-------------------------------------------------|
| 10                          | Temporary structures                            |
| 10-25                       | Replaceable structural parts                    |
| 15-30                       | Agricultural and similar structures             |
| 50                          | Building structures and other common structures |
| 100                         | Monumental buildings, bridges, other structures |

<sup>23</sup> European Organisation for Technical Approvals (EOTA) (1999). Assumption of working life of construction products in Guidelines for European Technical Approval, European Technical Approvals and Harmonized Standards. Guidance Document 002.
 <sup>24</sup> ISO 15686-1

<sup>&</sup>lt;sup>25</sup> European Commission (2002). EN 1990. Eurocode: Basis of structural design.

#### Table 3-23: Lifetime of cables and wires according their application

| Design working life (years) | Examples               |
|-----------------------------|------------------------|
| 1-3                         | Information technology |
| 5                           | Interior partition     |
| 10                          | Electrical systems     |
| 25                          | Mechanical systems     |
| 50                          | Skin (exterior)        |
| 100                         | Structure              |

# 1

6

7

9

11

Taking into account the variation amongst sources this study proposes the following lifetime values for power cables:

 Product life<sup>26</sup>: the product life is equal to the number of years between product 8 purchased and product discarded. The product life is not necessarily the same as the product service life, e.g. because the product can be stocked before 10 disposal. In case of power cables the product life is assumed equal to the life time of the building. Buildings have a not-in-service time part (vacancy) before getting into service, refurbished or discarded. During the not-in-service period 12 13 the power cables do not transport energy and have thus no losses. The product life parameter is listed per sector in Table 3-24. 14

15 Some of the stakeholders remarked that an average building lifetime between renovations of 8 years (12.4%, see Task 2) for the services and industrial sector 16 is rather short. Europacable experts mentioned lifetimes of 40 to 50 years for 17 cables in the services and industrial sector<sup>27</sup>. 18

19 Taking into account the variation amongst sources a short, long and reference 20 cable product lifetime is provided in Table 3-24 per sector. The high and low values for the product lifetime will be applied in the sensitivity analysis in Task 6 21 22 and Task 7.

23

#### 24

#### Table 3-24: Cable product lifetime

|                    | short pro | oduct life   | Refe      | erence       | long product life |              |  |  |  |
|--------------------|-----------|--------------|-----------|--------------|-------------------|--------------|--|--|--|
| Cashar             | Replace-  |              | Replace-  |              | Replace-          |              |  |  |  |
| Sector             | ment rate | Product life | ment rate | Product life | ment rate         | Product life |  |  |  |
| Uni                | t %       | year         | %         | year         | %                 | year         |  |  |  |
| Residential sector | 2.10%     | 40           | 1.18%     | 64           | 0.80%             | 84           |  |  |  |
| Services sector    | 7.08%     | 13           | 3.20%     | 25           | 1.70%             | 40           |  |  |  |
| Industry sector    | 7.08%     | 12           | 2.80%     | 25           | 1.37%             | 40           |  |  |  |

25 26

27 28 29

30

31 32 Product service life<sup>26</sup>: the product service life is the period in years that the product is in use and operational. The product service life parameter is listed per sector Table 3-24. The product service life of power cables is calculated with following formula:

*Product service life = Product life - not\_in\_service\_time* (formula 3.12)

<sup>&</sup>lt;sup>26</sup> Definition according VHK, MEErP 2011 METHODOLOGY PART 1.

<sup>&</sup>lt;sup>27</sup> Europacable paper as response to the secondary questionnaire

http://www.erp4cables.net/sites/erp4cables.net/files/attachments/Europacable%20Comments% 20Tasks%2012345f.pdf

2 3 Where

not\_in\_service\_time = Product life \* building\_vacancy\_factor building\_vacancy\_factor is assumed to be 5%

4 5

# 6 **Conclusion**:

The economic product lifetime therefore is determined by the refurbishment rate of the
building. This refurbishment rate is related to the function type of the building (see
Task 2).

# 10 **3.4.3 Installers and certifiers of electrical installations**

11 Potential affected:

- Electrical installation engineering companies
- Installers
- Certifiers

14 15

12

13

16 Designing taking energy efficiency and economy into account might require installers to 17 invest in extra training, and design tools. These design tools have to be adapted by 18 software development companies.

19

Installation time and related cost may increase due to extra wiring or more difficulthandling of cables with larger sizes.

22

Installing extra cables or cables with a larger size will have no implications on the required know-how of the installer. Installers in the non-residential sector are used to handle large cable sizes.

26

Depending on the policy certifiers may have to include extra procedures in thecertification process to verify the electrical installation.

## 29 **3.4.4 Physical environment**

As discussed in Task 1 the losses in electrical installations can be reduced by increasing the cable section or by reducing the load per circuit, having additional circuits for the same amount of load.

#### 33

35 36

37

34 The building construction and electric installation will be affected by:

- thicker cables are less flexible and need more volume/space for installation
- thicker cables need larger ducts and tubing
- the connectors for thicker cables may be different and larger
- having more circuits will increase the space requirements for the distribution
   boards
- having more circuits will increase the space requirements for the cables (ducts)
- 41

# 1 **ANNEX 3-A**

The tables in this section illustrate the calculation of the Kd factor for a load branch length factor of respectively 10%, 50%, 100% and 200%. The load branch length factor is a factor to reduce the ratio between the even (b2, b4, etc.) and odd (b1, b3, etc.) branches. A factor of 100% means that the branches all have the same length. A factor lower than 100% means that the even branches are shorter than the odd branches. A factor more than 100% means that the even branches are longer than the odd branches. For instance for a load branch factor of 200% the odd branches are getting very small, so the topology of the circuit is moving towards a star point topology where every node has a dedicated branch towards the begin point of the circuit (circuit breaker). The used lengths for the branches are shown in each table.

# Table 3-25: Kd factors: load branch length factor equal to 10%

| 004                                |          |         |            |         |         |             | -          |         |            |         | 10      |            | b.40    | 145     |            |         |         |            |         |         |            |         |         |            |
|------------------------------------|----------|---------|------------|---------|---------|-------------|------------|---------|------------|---------|---------|------------|---------|---------|------------|---------|---------|------------|---------|---------|------------|---------|---------|------------|
| CSA circuit                        | 2,5      | mm      |            |         |         |             | 01         | 03      | 05         | D/      | 09      | D'1'1      | D13     | D15     |            |         |         |            |         |         |            |         |         |            |
| Cable resistivity per m            | 0,00672  | Ω/m     |            |         |         |             | /          |         |            |         |         |            |         |         | L8         |         |         |            |         |         |            |         |         |            |
| Number of relevant cores           | 2        |         |            |         |         |             | <b>b</b> 2 | b4      | <b>b</b> 6 | 68      | b10     | b12        | b14     |         | 2          |         |         |            |         |         |            |         |         |            |
| l <sub>max</sub> (circuit breaker) | 16       | A       |            |         |         |             | L1         | L2      | L3         | L4      | L5      | L6         | L7      |         | Lo         | ad Id 📃 |         |            |         |         |            |         |         |            |
| Voltage                            | 230      | V       |            |         | 0       | ranchid     |            |         |            |         |         |            |         |         |            |         |         |            |         |         |            |         |         |            |
| Pmax                               | 3680     | W       |            |         |         |             |            |         |            |         |         |            |         |         |            |         |         |            |         |         |            |         |         |            |
| Circuit (total cable) length       | 30       | m       |            |         |         |             |            |         |            |         |         |            |         |         |            |         |         |            |         |         |            |         |         |            |
| Circuit loss at Imax               | 103,2192 | W       |            |         |         |             |            |         |            |         |         |            |         |         |            |         |         |            |         |         |            |         |         |            |
| Load branch length factor          | 10%      | %       |            |         |         |             |            |         |            |         |         |            |         |         |            |         |         |            |         |         |            |         |         |            |
|                                    |          |         |            |         |         |             |            |         |            |         |         |            |         |         |            |         |         |            |         |         |            |         |         |            |
| Number of branches with loa        | 1 1      |         |            | 2       |         |             | 3          |         |            | 4       |         |            | 5       |         |            | 6       |         |            | 7       |         |            | 8       |         |            |
|                                    |          |         |            |         |         |             |            |         |            |         |         |            |         |         |            |         |         |            |         |         |            |         |         |            |
|                                    | Power    |         |            | Power   |         |             | Power      |         |            | Power   |         |            | Power   |         |            | Power   |         |            | Power   |         |            | Power   |         |            |
| Load Id                            | usage    | Current |            | usage   | Current |             | usage      | Current |            | usage   | Current |            | usage   | Current |            | usage   | Current |            | usage   | Current |            | usage   | Current |            |
|                                    | W        | A       |            | W       | A       |             | W          | A       |            | W       | A       |            | W       | A       |            | W       | A       |            | W       | А       |            | W       | A       |            |
| 1                                  | 3680     | 16      |            | 1840    | 8       |             | 1226,67    | 5,33333 |            | 920     | 4       |            | 736     | 3,2     |            | 613,333 | 2,66667 |            | 525,714 | 2,28571 |            | 460     | 2       |            |
| 2                                  | 0        | 0       |            | 1840    | 8       |             | 1226,67    | 5,33333 |            | 920     | 4       |            | 736     | 3,2     |            | 613,333 | 2,66667 |            | 525,714 | 2,28571 |            | 460     | 2       |            |
| 3                                  | 0        | 0       |            | 0       | 0       |             | 1226,67    | 5,33333 |            | 920     | 4       |            | 736     | 3,2     |            | 613,333 | 2,66667 |            | 525,714 | 2,28571 |            | 460     | 2       |            |
| 4                                  | 0        | 0       |            | 0       | 0       |             | 0          | 0       |            | 920     | 4       |            | 736     | 3,2     |            | 613,333 | 2,66667 |            | 525,714 | 2,28571 |            | 460     | 2       |            |
| 5                                  | 0        | 0       |            | 0       | 0       |             | 0          | 0       |            | 0       | 0       |            | 736     | 3,2     |            | 613,333 | 2,66667 |            | 525,714 | 2,28571 |            | 460     | 2       |            |
| 6                                  | 0        | 0       |            | 0       | 0       |             | 0          | 0       |            | 0       | 0       |            | 0       | 0       |            | 613,333 | 2,66667 |            | 525,714 | 2,28571 |            | 460     | 2       |            |
| 7                                  | 0        | 0       |            | 0       | 0       |             | 0          | 0       |            | 0       | 0       |            | 0       | 0       |            | 0       | 0       |            | 525,714 | 2,28571 |            | 460     | 2       |            |
| 8                                  | 0        | 0       |            | 0       | 0       |             | 0          | 0       |            | 0       | 0       |            | 0       | 0       |            | 0       | 0       |            | 0       | 0       |            | 460     | 2       |            |
| Branch id                          | Current  | Length  | lose (D P) | Current | Length  | Ince (D.P.) | Current    | Length  | Ince (D P) | Current | Length  | lose (D P) | Current | Length  | lose (D P) | Current | Lenoth  | Ince (D P) | Current | Length  | lose (D P) | Current | Length  | Ince (D P) |
| branon la                          | Δ        | m       | W          | Δ       | m       | W           | Δ          | m       | W          | Δ       | m       | W          | Δ       | m       | W          | Δ       | m       | W          | Δ       | m       | W          | Δ       | m       | W          |
| 1                                  | 16 00    | 30.00   | 103 22     | 16 00   | 14 50   | 49.89       | 16 00      | 9.60    | 33.03      | 16 00   | 7 18    | 24 70      | 16 00   | 5.73    | 19.73      | 16 00   | 4 77    | 16.42      | 16 00   | 4 09    | 14.07      | 16 00   | 3.58    | 12 30      |
| 2                                  | 0.00     | 0.00    | 0.00       | 8 00    | 1 00    | 0.86        | 5.33       | 0.60    | 0.23       | 4 00    | 0.43    | 0.09       | 3 20    | 0.33    | 0.05       | 2.67    | 0.27    | 0.03       | 2 29    | 0.23    | 0.02       | 2 00    | 0.20    | 0.01       |
| 3                                  | 0.00     | 0.00    | 0,00       | 8.00    | 14 50   | 12 47       | 10.67      | 9,60    | 14.68      | 12 00   | 7 18    | 13.89      | 12.80   | 5 73    | 12.62      | 13.33   | 4 77    | 11 40      | 13 71   | 4 09    | 10.33      | 14 00   | 3.58    | 9.42       |
| 4                                  | 0.00     | 0.00    | 0.00       | 0.00    | 0.00    | 0.00        | 5.33       | 0,60    | 0.23       | 4 00    | 0.43    | 0.09       | 3 20    | 0.33    | 0.05       | 2 67    | 0.27    | 0.03       | 2 29    | 0.23    | 0.02       | 2 00    | 0.20    | 0.01       |
| 5                                  | 0.00     | 0,00    | 0.00       | 0.00    | 0.00    | 0 00        | 5.33       | 9 60    | 3.67       | 8 00    | 7.18    | 6 17       | 9.60    | 5,73    | 7.10       | 10.67   | 4 77    | 7.30       | 11.43   | 4 09    | 7.18       | 12.00   | 3.58    | 6.92       |
| 6                                  | 0.00     | 0.00    | 0.00       | 0.00    | 0.00    | 0.00        | 0.00       | 0.00    | 0.00       | 4.00    | 0.43    | 0.09       | 3.20    | 0.33    | 0.05       | 2.67    | 0.27    | 0.03       | 2.29    | 0.23    | 0.02       | 2.00    | 0.20    | 0.01       |
| 7                                  | 0.00     | 0.00    | 0.00       | 0.00    | 0.00    | 0.00        | 0.00       | 0.00    | 0.00       | 4.00    | 7.18    | 1.54       | 6.40    | 5,73    | 3,16       | 8.00    | 4.77    | 4.11       | 9.14    | 4.09    | 4.59       | 10.00   | 3.58    | 4.80       |
| 8                                  | 0.00     | 0.00    | 0.00       | 0.00    | 0.00    | 0.00        | 0.00       | 0.00    | 0.00       | 0.00    | 0.00    | 0.00       | 3.20    | 0.33    | 0.05       | 2.67    | 0.27    | 0.03       | 2.29    | 0.23    | 0.02       | 2.00    | 0.20    | 0.01       |
| 9                                  | 0.00     | 0.00    | 0.00       | 0.00    | 0.00    | 0.00        | 0.00       | 0.00    | 0.00       | 0.00    | 0.00    | 0.00       | 3.20    | 5.73    | 0.79       | 5.33    | 4.77    | 1.82       | 6.86    | 4.09    | 2.58       | 8.00    | 3.58    | 3.08       |
| 10                                 | 0.00     | 0.00    | 0.00       | 0.00    | 0.00    | 0.00        | 0.00       | 0.00    | 0.00       | 0.00    | 0.00    | 0.00       | 0.00    | 0.00    | 0.00       | 2.67    | 0.27    | 0.03       | 2.29    | 0.23    | 0.02       | 2.00    | 0.20    | 0.01       |
| 11                                 | 0.00     | 0.00    | 0.00       | 0.00    | 0.00    | 0.00        | 0.00       | 0.00    | 0.00       | 0.00    | 0.00    | 0.00       | 0.00    | 0.00    | 0.00       | 2.67    | 4.77    | 0.46       | 4.57    | 4.09    | 1.15       | 6.00    | 3.58    | 1.73       |
| 12                                 | 0.00     | 0 00    | 0 00       | 0 00    | 0.00    | 0 00        | 0 00       | 0 00    | 0 00       | 0 00    | 0 00    | 0.00       | 0 00    | 0 00    | 0 00       | 0.00    | 0 00    | 0 00       | 2 29    | 0.23    | 0.02       | 2 00    | 0.20    | 0.01       |
| 13                                 | 0.00     | 0.00    | 0.00       | 0.00    | 0.00    | 0.00        | 0.00       | 0.00    | 0.00       | 0.00    | 0.00    | 0.00       | 0.00    | 0.00    | 0.00       | 0.00    | 0.00    | 0.00       | 2.29    | 4.09    | 0.29       | 4.00    | 3.58    | 0.77       |
| 14                                 | 0 00     | 0 00    | 0 00       | 0 00    | 0.00    | 0 00        | 0 00       | 0 00    | 0 00       | 0 00    | 0 00    | 0.00       | 0 00    | 0 00    | 0 00       | 0 00    | 0 00    | 0 00       | 0 00    | 0.00    | 0 00       | 2 00    | 0.20    | 0.01       |
| 15                                 | 0.00     | 0.00    | 0.00       | 0.00    | 0.00    | 0.00        | 0.00       | 0.00    | 0.00       | 0.00    | 0.00    | 0.00       | 0.00    | 0.00    | 0.00       | 0.00    | 0.00    | 0.00       | 0.00    | 0.00    | 0.00       | 2.00    | 3.58    | 0.19       |
|                                    | -,       | .,      | -,         | -,      | -,      | .,          | -,         | .,      | -,         | -,      | -,      | .,         | -,      | -,      | -,         | .,      | -,      | -,         | -,      | -,      | .,         | _,      | -,      |            |
| Total                              |          | 30,00   | 103,22     |         | 30,00   | 63,22       |            | 30,00   | 51,84      |         | 30,00   | 46,59      |         | 30,00   | 43,58      |         | 30,00   | 41,64      |         | 30,00   | 40,28      |         | 30,00   | 39,28      |
| Kd                                 |          |         | 1,00       |         |         | 0,61        |            |         | 0,50       |         |         | 0,45       |         |         | 0,42       |         |         | 0,40       |         |         | 0,39       |         |         | 0,38       |

Table 3-26: Kd factors: load branch length factor equal to 50%

| CSA circuit                  | 2,5      | mm²     |            |         |         |            | b,1     | b3      | b5         | b7      | b9      | b11        | b13     | b15     |            |         |         |            |         |         |            |         |         |            |
|------------------------------|----------|---------|------------|---------|---------|------------|---------|---------|------------|---------|---------|------------|---------|---------|------------|---------|---------|------------|---------|---------|------------|---------|---------|------------|
| Cable resistivity per m      | 0,00672  | Ω/m     |            |         |         |            |         |         |            |         |         |            |         |         | L8         |         |         |            |         |         |            |         |         |            |
| Number of relevant cores     | 2        |         |            |         |         |            | b2      | b4      | b6         | b8      | b10     | b12        | b14     |         |            |         |         |            |         |         |            |         |         |            |
| Imex (circuit breaker)       | 16       | Α       |            |         |         |            | L1      | L2      | L3         | L4      | L5      | L6         | L7      |         | – Fie      | adId    |         |            |         |         |            |         |         |            |
| Voltage                      | 230      | v       |            |         | b       | ranchid    |         |         |            |         |         |            |         |         |            | dana    |         |            |         |         |            |         |         |            |
| Pmax                         | 3680     | w       |            |         |         |            |         |         |            |         |         |            |         |         |            |         |         |            |         |         |            |         |         |            |
| Circuit (total cable) length | 30       | m       |            |         |         |            |         |         |            |         |         |            |         |         |            |         |         |            |         |         |            |         |         |            |
| Circuit loss at Imax         | 103,2192 | W       |            |         |         |            |         |         |            |         |         |            |         |         |            |         |         |            |         |         |            |         |         |            |
| Load branch length factor    | 50%      | %       |            |         |         |            |         |         |            |         |         |            |         |         |            |         |         |            |         |         |            |         |         |            |
|                              |          |         |            |         |         |            |         |         |            |         |         |            |         |         |            |         |         |            |         |         |            |         |         |            |
| Number of branches with loa  | 1        |         |            | 2       |         |            | 3       |         |            | 4       |         |            | 5       |         |            | 6       |         |            | 7       |         |            | 8       |         |            |
|                              | Dower    |         |            | Dower   |         |            | Dower   |         |            | Dower   |         |            | Power   |         |            | Dower   |         |            | Dower   |         |            | Dower   |         |            |
| bl.beo.l                     | UPage    | Current |            | LICODO  | Current |            | UPage   | Current |            | UPage   | Current |            | UPage   | Current |            | LICODO  | Current |            | LICODO  | Current |            | LIESOO  | Current |            |
| Load Id                      | W        | Δ       |            | W       | Δ       |            | W       | Δ       |            | W       | Δ       |            | W       | Δ       |            | W       | Δ       |            | W       | Δ       |            | W       | Δ       |            |
| 1                            | 3680     | 16      |            | 1840    | ŝ       |            | 1226.67 | 5 33333 |            | 920     | 2       |            | 736     | 32      |            | 613 333 | 2 66667 |            | 525 714 | 2 28571 |            | 460     | 5       |            |
| 2                            | 0        | 0       |            | 1840    | 8       |            | 1226.67 | 5 33333 |            | 920     | 4       |            | 736     | 3.2     |            | 613 333 | 2,66667 |            | 525 714 | 2 28571 |            | 460     | 2       |            |
| 3                            | ŏ        | ŏ       |            | 0       | õ       |            | 1226 67 | 5 33333 |            | 920     | 4       |            | 736     | 3.2     |            | 613 333 | 2 66667 |            | 525 714 | 2 28571 |            | 460     | 2       |            |
| 4                            | ō        | ō       |            | ō       | ō       |            | 0       | 0       |            | 920     | 4       |            | 736     | 3.2     |            | 613.333 | 2.66667 |            | 525,714 | 2,28571 |            | 460     | 2       |            |
| 5                            | ō        | ō       |            | ō       | ō       |            | ō       | ō       |            | 0       | Ó       |            | 736     | 3.2     |            | 613.333 | 2.66667 |            | 525,714 | 2.28571 |            | 460     | 2       |            |
| 6                            | 0        | 0       |            | 0       | 0       |            | 0       | 0       |            | 0       | 0       |            | 0       | 0       |            | 613,333 | 2,66667 |            | 525,714 | 2.28571 |            | 460     | 2       |            |
| 7                            | 0        | 0       |            | 0       | 0       |            | 0       | 0       |            | 0       | 0       |            | 0       | 0       |            | ó       | Ó O     |            | 525,714 | 2,28571 |            | 460     | 2       |            |
| 8                            | 0        | 0       |            | 0       | 0       |            | 0       | 0       |            | 0       | 0       |            | 0       | 0       |            | 0       | 0       |            | Ó       | 0       |            | 460     | 2       |            |
|                              |          |         |            |         |         |            |         |         |            |         |         |            |         |         |            |         |         |            |         |         |            |         |         |            |
| Branch id                    | Current  | Length  | loss (R.P) | Current | Length  | loss (R.P) | Current | Length  | loss (R.P) | Current | Length  | loss (R.P) | Current | Length  | loss (R.P) | Current | Length  | loss (R.P) | Current | Length  | loss (R.P) | Current | Length  | loss (R.P) |
|                              | A        | m       | W          | A       | m       | W          | A       | m       | W          | A       | m       | W          | A       | m       | W          | A       | m       | W          | A       | m       | W          | A       | m       | W          |
| 1                            | 16,00    | 30,00   | 103,22     | 16,00   | 12,50   | 43,01      | 16,00   | 8,00    | 27,53      | 16,00   | 5,89    | 20,28      | 16,00   | 4,67    | 16,06      | 16,00   | 3,86    | 13,29      | 16,00   | 3,30    | 11,34      | 16,00   | 2,88    | 9,89       |
| 2                            | 0,00     | 0,00    | 0,00       | 8,00    | 5,00    | 4,30       | 5,33    | 3,00    | 1,15       | 4,00    | 2,14    | 0,46       | 3,20    | 1,67    | 0,23       | 2,67    | 1,36    | 0,13       | 2,29    | 1,15    | 0,08       | 2,00    | 1,00    | 0,05       |
| 3                            | 0,00     | 0,00    | 0,00       | 8,00    | 12,50   | 10,75      | 10,67   | 8,00    | 12,23      | 12,00   | 5,89    | 11,40      | 12,80   | 4,67    | 10,28      | 13,33   | 3,86    | 9,23       | 13,71   | 3,30    | 8,33       | 14,00   | 2,88    | 7,57       |
| 4                            | 0,00     | 0,00    | 0,00       | 0,00    | 0,00    | 0,00       | 5,33    | 3,00    | 1,15       | 4,00    | 2,14    | 0,46       | 3,20    | 1,67    | 0,23       | 2,67    | 1,36    | 0,13       | 2,29    | 1,15    | 0,08       | 2,00    | 1,00    | 0,05       |
| 5                            | 0,00     | 0,00    | 0,00       | 0,00    | 0,00    | 0,00       | 5,33    | 8,00    | 3,06       | 8,00    | 5,89    | 5,07       | 9,60    | 4,67    | 5,78       | 10,67   | 3,86    | 5,91       | 11,43   | 3,30    | 5,79       | 12,00   | 2,88    | 5,56       |
| 6                            | 0,00     | 0,00    | 0,00       | 0,00    | 0,00    | 0,00       | 0,00    | 0,00    | 0,00       | 4,00    | 2,14    | 0,46       | 3,20    | 1,67    | 0,23       | 2,67    | 1,36    | 0,13       | 2,29    | 1,15    | 0,08       | 2,00    | 1,00    | 0,05       |
| 1                            | 0,00     | 0,00    | 0,00       | 0,00    | 0,00    | 0,00       | 0,00    | 0,00    | 0,00       | 4,00    | 5,89    | 1,27       | 6,40    | 4,67    | 2,57       | 8,00    | 3,86    | 3,32       | 9,14    | 3,30    | 3,70       | 10,00   | 2,88    | 3,86       |
| 0                            | 0,00     | 0,00    | 0,00       | 0,00    | 0,00    | 0,00       | 0,00    | 0,00    | 0,00       | 0,00    | 0,00    | 0,00       | 3,20    | 1,07    | 0,23       | 2,07    | 2.00    | 1 49       | 2,29    | 2 20    | 2.09       | 2,00    | 2 00    | 0,05       |
| 5                            | 0,00     | 0,00    | 0,00       | 0,00    | 0,00    | 0,00       | 0,00    | 0,00    | 0,00       | 0,00    | 0,00    | 0,00       | 0.00    | 4,07    | 0,04       | 3,33    | 3,00    | 0.42       | 0,00    | 3,30    | 2,00       | 2,00    | 2,00    | 2,47       |
| 10                           | 0,00     | 0,00    | 0,00       | 0,00    | 0,00    | 0,00       | 0,00    | 0,00    | 0,00       | 0,00    | 0,00    | 0,00       | 0,00    | 0,00    | 0,00       | 2,07    | 3.86    | 0,13       | 4.57    | 3 30    | 0,00       | 6.00    | 2.88    | 1 30       |
| 12                           | 0,00     | 0,00    | 0,00       | 0,00    | 0,00    | 0,00       | 0,00    | 0,00    | 0,00       | 0,00    | 0,00    | 0,00       | 0,00    | 0,00    | 0,00       | 0.00    | 0.00    | 0,07       | 2.20    | 1 15    | 0,55       | 2.00    | 2,00    | 0.05       |
| 13                           | 0.00     | 0,00    | 0.00       | 0.00    | 0,00    | 0,00       | 0.00    | 0.00    | 0.00       | 0,00    | 0,00    | 0,00       | 0.00    | 0.00    | 0,00       | 0.00    | 0,00    | 0,00       | 2,23    | 3 30    | 0.23       | 4 00    | 2.88    | 0.62       |
| 14                           | 0.00     | 0,00    | 0.00       | 0.00    | 0,00    | 0.00       | 0.00    | 0.00    | 0,00       | 0,00    | 0,00    | 0,00       | 0.00    | 0.00    | 0.00       | 0.00    | 0,00    | 0,00       | 0.00    | 0.00    | 0.00       | 2 00    | 1 00    | 0.05       |
| 15                           | 0.00     | 0.00    | 0.00       | 0.00    | 0.00    | 0.00       | 0.00    | 0.00    | 0,00       | 0.00    | 0.00    | 0.00       | 0,00    | 0.00    | 0.00       | 0.00    | 0.00    | 0.00       | 0.00    | 0.00    | 0.00       | 2 00    | 2.88    | 0.15       |
|                              | 2,00     | 2,00    | 2,00       | 2,00    | 2,00    | 2,00       | 2,00    | 2,00    | 2,00       | 2,00    | 2,00    | 2,00       | 2,00    | 2,00    | 2,00       | 2,00    | 2,00    | 2,00       | 2,00    | 2,00    | 2,00       | 2,50    | 2,00    | 5,10       |
| Total                        |          | 30,00   | 103,22     |         | 30,00   | 58,06      |         | 30,00   | 45,11      |         | 30,00   | 39,40      |         | 30,00   | 36,24      |         | 30,00   | 34,25      |         | 30,00   | 32,89      |         | 30,00   | 31,91      |
| Kd                           |          |         | 1,00       |         |         | 0,56       |         |         | 0,44       |         |         | 0,38       |         |         | 0,35       |         |         | 0,33       |         |         | 0,32       |         |         | 0,31       |

Table 3-27: Kd factors: load branch length factor equal to 100%

| CSA circuit<br>Cable resistivity per m<br>Number of relevant cores<br>h <sub>ext</sub> (circuit breaker)<br>Voltage<br>Pmax<br>Circuit (total cable) length<br>Circuit loss at Imax<br>Load branch length factor | 2,5<br>0,00672<br>2<br>16<br>230<br>3680<br>30<br>103,2192<br>100% | mm²<br>Ω/m<br>V<br>W<br>m<br>W                               | I                                                              |                                                               | b                                                            | anchid                                                                | 61<br>62<br>L1                                                                         | b3<br>b4<br>L2                                                         | b5<br>b6<br>L3                                                                        | b7<br>b8<br>L4                                                                 | b9<br>b10<br>L5                                                                                              | b11<br>b12<br>L6                                                                                     | b13<br>b14<br>L7                                                                                                      | b15                                                              | L8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ad Id                                                                                                                   |                                                                                     |                                                                                                                      |                                                                                                                         |                                                                                           |                                                                                                                                      |                                                                                                         |                                                                                    |                                                                                                      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| Number of branches with loa                                                                                                                                                                                      | 1                                                                  |                                                              |                                                                | 2                                                             |                                                              |                                                                       | 3                                                                                      |                                                                        |                                                                                       | 4                                                                              |                                                                                                              |                                                                                                      | 5                                                                                                                     |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6                                                                                                                       |                                                                                     |                                                                                                                      | 7                                                                                                                       |                                                                                           |                                                                                                                                      | 8                                                                                                       |                                                                                    |                                                                                                      |
| Load Id<br>1<br>2<br>3<br>4<br>5<br>6<br>7                                                                                                                                                                       | Power<br>usage<br>W<br>3680<br>0<br>0<br>0<br>0<br>0<br>0<br>0     | Current<br>A<br>16<br>0<br>0<br>0<br>0<br>0<br>0             |                                                                | Power<br>usage<br>W<br>1840<br>1840<br>0<br>0<br>0<br>0<br>0  | Current<br>A<br>8<br>0<br>0<br>0<br>0<br>0<br>0<br>0         |                                                                       | Power<br>usage<br>W<br>1226,67<br>1226,67<br>1226,67<br>0<br>0<br>0<br>0               | Current<br>A<br>5,33333<br>5,33333<br>5,33333<br>0<br>0<br>0<br>0<br>0 |                                                                                       | Power<br>usage<br>W<br>920<br>920<br>920<br>920<br>0<br>0<br>0                 | Current<br>A<br>4<br>4<br>4<br>0<br>0<br>0<br>0                                                              |                                                                                                      | Power<br>usage<br>W<br>736<br>736<br>736<br>736<br>736<br>0<br>0<br>0                                                 | Current<br>A<br>3,2<br>3,2<br>3,2<br>3,2<br>3,2<br>3,2<br>0<br>0 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Power<br>usage<br>W<br>613,333<br>613,333<br>613,333<br>613,333<br>613,333<br>613,333<br>0                              | Current<br>A<br>2,66667<br>2,66667<br>2,66667<br>2,66667<br>2,66667<br>2,66667<br>0 |                                                                                                                      | Power<br>usage<br>W<br>525,714<br>525,714<br>525,714<br>525,714<br>525,714<br>525,714<br>525,714                        | Current<br>A<br>2,28571<br>2,28571<br>2,28571<br>2,28571<br>2,28571<br>2,28571<br>2,28571 |                                                                                                                                      | Power<br>usage<br>W<br>460<br>460<br>460<br>460<br>460<br>460                                           | Current<br>A<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 |                                                                                                      |
| 8                                                                                                                                                                                                                | 0                                                                  | 0                                                            |                                                                | 0                                                             | 0                                                            |                                                                       | 0                                                                                      | 0                                                                      |                                                                                       | 0                                                                              | 0                                                                                                            |                                                                                                      | 0                                                                                                                     | 0                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                                                                                       | 0                                                                                   |                                                                                                                      | Ó                                                                                                                       | 0                                                                                         |                                                                                                                                      | 460                                                                                                     | 2                                                                                  |                                                                                                      |
| Branch id                                                                                                                                                                                                        | Current                                                            | Length                                                       | loss (R.I <sup>2</sup> )                                       | Current                                                       | Length                                                       | loss (R.P)                                                            | Current                                                                                | Length                                                                 | loss (R.P)                                                                            | Current                                                                        | Length                                                                                                       | loss (R.P)                                                                                           | Current                                                                                                               | Length                                                           | loss (R.P)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Current                                                                                                                 | Length                                                                              | loss (R.P)                                                                                                           | Current                                                                                                                 | Length                                                                                    | loss (R.P)                                                                                                                           | Current                                                                                                 | Length                                                                             | loss (R.P)                                                                                           |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15                                                                                                                                    | 16,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00      | 30,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,0 | 103,22<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00 | 16,00<br>8,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00 | 10,00<br>10,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0, | 34,41<br>8,60<br>8,60<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00 | 16,00<br>5,33<br>10,67<br>5,33<br>5,33<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00 | 6,00<br>6,00<br>6,00<br>6,00<br>0,00<br>0,00<br>0,00<br>0,00           | 20,64<br>2,29<br>9,18<br>2,29<br>2,29<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00 | 16,00<br>4,00<br>12,00<br>4,00<br>4,00<br>4,00<br>0,00<br>0,00<br>0,00<br>0,00 | 4,29<br>4,29<br>4,29<br>4,29<br>4,29<br>4,29<br>4,29<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00 | 14,75<br>0,92<br>8,29<br>0,92<br>3,69<br>0,92<br>0,92<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,0 | 16,00<br>3,20<br>12,80<br>3,20<br>9,60<br>3,20<br>6,40<br>3,20<br>3,20<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,0 | 3,33<br>3,33<br>3,33<br>3,33<br>3,33<br>3,33<br>3,33<br>3,3      | $\begin{array}{c} 11,47\\ 0,46\\ 7,34\\ 0,46\\ 4,13\\ 0,46\\ 1,84\\ 0,46\\ 0,46\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,0\\$ | 16,00<br>2,67<br>13,33<br>2,67<br>10,67<br>2,67<br>8,00<br>2,67<br>5,33<br>2,67<br>2,67<br>0,00<br>0,00<br>0,00<br>0,00 | 2,73<br>2,73<br>2,73<br>2,73<br>2,73<br>2,73<br>2,73<br>2,73                        | 9,38<br>0,26<br>6,52<br>0,26<br>4,17<br>0,26<br>2,35<br>0,26<br>1,04<br>0,26<br>0,26<br>0,00<br>0,00<br>0,00<br>0,00 | 16,00<br>2,29<br>13,71<br>2,29<br>11,43<br>2,29<br>9,14<br>2,29<br>6,86<br>2,29<br>4,57<br>2,29<br>2,29<br>0,00<br>0,00 | 2,31<br>2,31<br>2,31<br>2,31<br>2,31<br>2,31<br>2,31<br>2,31                              | 7,94<br>0,16<br>5,83<br>0,16<br>2,59<br>0,16<br>1,46<br>0,16<br>0,65<br>0,16<br>0,16<br>0,16<br>0,16<br>0,16<br>0,16<br>0,16<br>0,16 | 16,00<br>2,00<br>14,00<br>2,00<br>10,00<br>2,00<br>8,00<br>2,00<br>6,00<br>2,00<br>4,00<br>2,00<br>2,00 | 2,00<br>2,00<br>2,00<br>2,00<br>2,00<br>2,00<br>2,00<br>2,00                       | 6,88<br>0,11<br>5,27<br>0,11<br>2,69<br>0,11<br>1,72<br>0,11<br>0,97<br>0,11<br>0,43<br>0,11<br>0,11 |
| Total<br>Kd                                                                                                                                                                                                      |                                                                    | 30,00                                                        | 103,22<br>1,00                                                 |                                                               | 30,00                                                        | 51,61<br>0,50                                                         |                                                                                        | 30,00                                                                  | 36,70<br>0,36                                                                         |                                                                                | 30,00                                                                                                        | 30,41<br>0,29                                                                                        |                                                                                                                       | 30,00                                                            | 27,07<br>0,26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                         | 30,00                                                                               | 25,02<br>0,24                                                                                                        |                                                                                                                         | 30,00                                                                                     | 23,66<br>0,23                                                                                                                        |                                                                                                         | 30,00                                                                              | 22,69<br>0,22                                                                                        |

Table 3-28: Kd factors: load branch length factor equal to 200%

| CSA circuit                  | 2,5      | mm <sup>2</sup> |
|------------------------------|----------|-----------------|
| Cable resistivity per m      | 0,00672  | Ω/m             |
| Number of relevant cores     | 2        |                 |
| Imax (circuit breaker)       | 16       | Α               |
| Voltage                      | 230      | v               |
| Pmax                         | 3680     | w               |
| Circuit (total cable) length | 30       | m               |
| Circuit loss at Imax         | 103,2192 | w               |
| Load branch length factor    | 200%     | %               |



| lumber of branches with loa | 1       |         |            | 2       |         |            | 3       |         |            | 4       |         |            | 5       |         |            | 6       |         |            | 7       |         |            | 8       |         |            |
|-----------------------------|---------|---------|------------|---------|---------|------------|---------|---------|------------|---------|---------|------------|---------|---------|------------|---------|---------|------------|---------|---------|------------|---------|---------|------------|
|                             | Power   |         |            | Power   |         |            | Power   |         |            | Power   |         |            | Power   |         |            | Power   |         |            | Power   |         |            | Power   |         |            |
| Load Id                     | usage   | Current |            |
|                             | W       | Α       |            | W       | Α       |            | W       | Α       |            | W       | Α       |            | W       | Α       |            | W       | Α       |            | w       | Α       |            | W       | Α       |            |
| 1                           | 3680    | 16      |            | 1840    | 8       |            | 1226.67 | 5.33333 |            | 920     | 4       |            | 736     | 3.2     |            | 613.333 | 2.66667 |            | 525,714 | 2.28571 |            | 460     | 2       |            |
| 2                           | 0       | 0       |            | 1840    | 8       |            | 1226.67 | 5.33333 |            | 920     | 4       |            | 736     | 3.2     |            | 613,333 | 2.66667 |            | 525,714 | 2,28571 |            | 460     | 2       |            |
| 3                           | 0       | 0       |            | 0       | 0       |            | 1226.67 | 5.33333 |            | 920     | 4       |            | 736     | 3.2     |            | 613,333 | 2.66667 |            | 525,714 | 2.28571 |            | 460     | 2       |            |
| 4                           | 0       | 0       |            | 0       | 0       |            | 0       | 0       |            | 920     | 4       |            | 736     | 3.2     |            | 613,333 | 2,66667 |            | 525,714 | 2,28571 |            | 460     | 2       |            |
| 5                           | Ō       | ō       |            | Ō       | ō       |            | Ō       | Ō       |            | 0       | Ó       |            | 736     | 3.2     |            | 613.333 | 2.66667 |            | 525,714 | 2.28571 |            | 460     | 2       |            |
| 6                           | 0       | 0       |            | 0       | 0       |            | 0       | 0       |            | 0       | 0       |            | 0       | Ó       |            | 613,333 | 2,66667 |            | 525,714 | 2,28571 |            | 460     | 2       |            |
| 7                           | 0       | 0       |            | 0       | 0       |            | 0       | 0       |            | 0       | 0       |            | 0       | 0       |            | ó       | 0       |            | 525,714 | 2.28571 |            | 460     | 2       |            |
| 8                           | 0       | 0       |            | 0       | 0       |            | 0       | 0       |            | 0       | 0       |            | 0       | 0       |            | 0       | 0       |            | Ó       | 0       |            | 460     | 2       |            |
|                             |         |         |            |         |         |            |         |         |            |         |         |            |         |         |            |         |         |            |         |         |            |         |         |            |
| Branch id                   | Current | Length  | loss (R.P) |
|                             | A       | m       | W          | A       | m       | W          | Α       | m       | W          | Α       | m       | W          | Α       | m       | W          | A       | m       | W          | Α       | m       | W          | A       | m       | W          |
| 1                           | 16,00   | 30,00   | 103,22     | 16,00   | 5,00    | 17,20      | 16,00   | 2,00    | 6,88       | 16,00   | 1,07    | 3,69       | 16,00   | 0,67    | 2,29       | 16,00   | 0,45    | 1,56       | 16,00   | 0,33    | 1,13       | 16,00   | 0,25    | 0,86       |
| 2                           | 0,00    | 0,00    | 0,00       | 8,00    | 20,00   | 17,20      | 5,33    | 12,00   | 4,59       | 4,00    | 8,57    | 1,84       | 3,20    | 6,67    | 0,92       | 2,67    | 5,45    | 0,52       | 2,29    | 4,62    | 0,32       | 2,00    | 4,00    | 0,22       |
| 3                           | 0,00    | 0,00    | 0,00       | 8,00    | 5,00    | 4,30       | 10,67   | 2,00    | 3,06       | 12,00   | 1,07    | 2,07       | 12,80   | 0,67    | 1,47       | 13,33   | 0,45    | 1,09       | 13,71   | 0,33    | 0,83       | 14,00   | 0,25    | 0,66       |
| 4                           | 0,00    | 0,00    | 0,00       | 0,00    | 0,00    | 0,00       | 5,33    | 12,00   | 4,59       | 4,00    | 8,57    | 1,84       | 3,20    | 6,67    | 0,92       | 2,67    | 5,45    | 0,52       | 2,29    | 4,62    | 0,32       | 2,00    | 4,00    | 0,22       |
| 5                           | 0,00    | 0,00    | 0,00       | 0,00    | 0,00    | 0,00       | 5,33    | 2,00    | 0,76       | 8,00    | 1,07    | 0,92       | 9,60    | 0,67    | 0,83       | 10,67   | 0,45    | 0,70       | 11,43   | 0,33    | 0,58       | 12,00   | 0,25    | 0,48       |
| 6                           | 0,00    | 0,00    | 0,00       | 0,00    | 0,00    | 0,00       | 0,00    | 0,00    | 0,00       | 4,00    | 8,57    | 1,84       | 3,20    | 6,67    | 0,92       | 2,67    | 5,45    | 0,52       | 2,29    | 4,62    | 0,32       | 2,00    | 4,00    | 0,22       |
| 7                           | 0,00    | 0,00    | 0,00       | 0,00    | 0,00    | 0,00       | 0,00    | 0,00    | 0,00       | 4,00    | 1,07    | 0,23       | 6,40    | 0,67    | 0,37       | 8,00    | 0,45    | 0,39       | 9,14    | 0,33    | 0,37       | 10,00   | 0,25    | 0,34       |
| 8                           | 0,00    | 0,00    | 0,00       | 0,00    | 0,00    | 0,00       | 0,00    | 0,00    | 0,00       | 0,00    | 0,00    | 0,00       | 3,20    | 6,67    | 0,92       | 2,67    | 5,45    | 0,52       | 2,29    | 4,62    | 0,32       | 2,00    | 4,00    | 0,22       |
| 9                           | 0,00    | 0,00    | 0,00       | 0,00    | 0,00    | 0,00       | 0,00    | 0,00    | 0,00       | 0,00    | 0,00    | 0,00       | 3,20    | 0,67    | 0,09       | 5,33    | 0,45    | 0,17       | 6,86    | 0,33    | 0,21       | 8,00    | 0,25    | 0,22       |
| 10                          | 0,00    | 0,00    | 0,00       | 0,00    | 0,00    | 0,00       | 0,00    | 0,00    | 0,00       | 0,00    | 0,00    | 0,00       | 0,00    | 0,00    | 0,00       | 2,67    | 5,45    | 0,52       | 2,29    | 4,62    | 0,32       | 2,00    | 4,00    | 0,22       |
| 11                          | 0,00    | 0,00    | 0,00       | 0,00    | 0,00    | 0,00       | 0,00    | 0,00    | 0,00       | 0,00    | 0,00    | 0,00       | 0,00    | 0,00    | 0,00       | 2,67    | 0,45    | 0,04       | 4,57    | 0,33    | 0,09       | 6,00    | 0,25    | 0,12       |
| 12                          | 0,00    | 0,00    | 0,00       | 0,00    | 0,00    | 0,00       | 0,00    | 0,00    | 0,00       | 0,00    | 0,00    | 0,00       | 0,00    | 0,00    | 0,00       | 0,00    | 0,00    | 0,00       | 2,29    | 4,62    | 0,32       | 2,00    | 4,00    | 0,22       |
| 13                          | 0,00    | 0,00    | 0,00       | 0,00    | 0,00    | 0,00       | 0,00    | 0,00    | 0,00       | 0,00    | 0,00    | 0,00       | 0,00    | 0,00    | 0,00       | 0,00    | 0,00    | 0,00       | 2,29    | 0,33    | 0,02       | 4,00    | 0,25    | 0,05       |
| 14                          | 0,00    | 0,00    | 0,00       | 0,00    | 0,00    | 0,00       | 0,00    | 0,00    | 0,00       | 0,00    | 0,00    | 0,00       | 0,00    | 0,00    | 0,00       | 0,00    | 0,00    | 0,00       | 0,00    | 0,00    | 0,00       | 2,00    | 4,00    | 0,22       |
| 15                          | 0,00    | 0,00    | 0,00       | 0,00    | 0,00    | 0,00       | 0,00    | 0,00    | 0,00       | 0,00    | 0,00    | 0,00       | 0,00    | 0,00    | 0,00       | 0,00    | 0,00    | 0,00       | 0,00    | 0,00    | 0,00       | 2,00    | 0,25    | 0,01       |
| Total                       |         | 30.00   | 103.22     |         | 30.00   | 38.71      |         | 30.00   | 19.88      |         | 30.00   | 12.44      |         | 30.00   | 8.72       |         | 30.00   | 6.56       |         | 30.00   | 5.19       |         | 30.00   | 4.25       |
| Kd                          |         |         | 1.00       |         |         | 0.38       |         |         | 0.19       |         |         | 0.12       |         |         | 0.08       |         |         | 0.06       |         |         | 0.05       |         |         | 0.04       |